# Find the maximum and minimum values of ${\cos ^6}\theta + {\sin ^6}\theta $ respectively.

$\left( a \right){\text{ 1 and }}\dfrac{1}{4}$

$\left( b \right){\text{ 1 and 0}}$

$\left( c \right){\text{ 2 and 0}}$

$(d){\text{ 1 and }}\dfrac{1}{2}$

Last updated date: 17th Mar 2023

•

Total views: 305.1k

•

Views today: 3.84k

Answer

Verified

305.1k+ views

Hint: First simplify the expression using various algebraic & trigonometric identities & then use the range of the trigonometric function in the simplified form.

Complete step-by-step answer:

We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.

So let’s simplify it first,

Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.

So we can also write this as

$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$

Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have

$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$

Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)

$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$

Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $

So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $

Now using equation 1 we have

$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $

We can write this as

$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $

Now using $2\sin \theta \cos \theta = \sin 2\theta $

We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$

Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $

$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$

Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $

Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)

Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)

$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$

$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)

Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $

Hence

$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$

Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1

So option (a) is correct.

Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.

Complete step-by-step answer:

We have to find the maximum and minimum value of ${\cos ^6}\theta + {\sin ^6}\theta $.

So let’s simplify it first,

Let $f(\theta ) = {\cos ^6}\theta + {\sin ^6}\theta $.

So we can also write this as

$f(\theta ) = {\left( {si{n^2}\theta } \right)^3} + {\left( {{{\cos }^2}\theta } \right)^3}$

Now using ${a^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$, we have

$f(\theta ) = \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$

Using ${\sin ^2}\theta + {\cos ^2}\theta = 1$…………………………… (1)

$f(\theta ) = \left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right)$

Now we can write $\left( {{{\sin }^4}\theta + {{\cos }^4}\theta - {{\sin }^2}\theta {{\cos }^2}\theta } \right) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $

So we can write $f(\theta ) = {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)^2} - 3{\sin ^2}\theta {\cos ^2}\theta $

Now using equation 1 we have

$f(\theta ) = 1 - 3{\sin ^2}\theta {\cos ^2}\theta $

We can write this as

$f(\theta ) = 1 - \dfrac{3}{4} \times 4{\sin ^2}\theta {\cos ^2}\theta $

Now using $2\sin \theta \cos \theta = \sin 2\theta $

We have $f(\theta ) = \dfrac{3}{4}{\left( {\sin 2\theta } \right)^2}$

Using half angle formulae, $\left( {1 - \cos 4\theta } \right) = 2{\sin ^2}2\theta $

$ \Rightarrow 1 - \dfrac{3}{8}\left( {1 - \cos 4\theta } \right)$

Let’s simplify it further we get $1 - \dfrac{3}{8} + \dfrac{3}{8}\cos 4\theta $

Hence $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $……………………………. (2)

Now we know that $ - 1 \leqslant {\text{ cos4}}\theta {\text{ }} \leqslant {\text{ 1}}$ (maximum and minimum inbound of cos x)

$ \Rightarrow - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant {\text{ }}\dfrac{3}{8}$

$ \Rightarrow \dfrac{5}{8} - \dfrac{3}{8} \leqslant {\text{ }}\dfrac{5}{8} + \dfrac{3}{8}{\text{cos4}}\theta {\text{ }} \leqslant \dfrac{5}{8} + \dfrac{3}{8}$ (Adding $\dfrac{5}{{8{\text{ }}}}$to all sides of inequality)

Now using equation 2 we know that $f(\theta ) = \dfrac{5}{8} + \dfrac{3}{8}\cos 4\theta $

Hence

$\dfrac{1}{4} \leqslant f(\theta ) \leqslant 1$

Thus the minimum value of the required quantity is $\dfrac{1}{4}$and maximum value is 1

So option (a) is correct.

Note: Whenever we have to solve such problems, try to simplify as much as possible in order to reach the simplest form of expression, then use the min and max inbounds of the simplified part to reach up to the solution.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE