
Find the locus of the point of intersection of two straight lines \[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\]and\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\].
Answer
514.5k+ views
Hint: Assume a point and its coordinates, and make them satisfy the two equations of lines given in the question. Then, eliminate $t$ from them, using algebra, and get an equation only in terms of the $x$ and $y$ coordinates of the point of intersection you originally assumed.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Soap bubble appears coloured due to the phenomenon class 11 physics CBSE

How is the brain protected from injury and shock class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

What is Environment class 11 chemistry CBSE
