
Find the locus of the point of intersection of two straight lines \[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\]and\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\].
Answer
607.5k+ views
Hint: Assume a point and its coordinates, and make them satisfy the two equations of lines given in the question. Then, eliminate $t$ from them, using algebra, and get an equation only in terms of the $x$ and $y$ coordinates of the point of intersection you originally assumed.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

