Find the locus of the point of intersection of two straight lines \[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\]and\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\].
Last updated date: 21st Mar 2023
•
Total views: 308.1k
•
Views today: 5.86k
Answer
308.1k+ views
Hint: Assume a point and its coordinates, and make them satisfy the two equations of lines given in the question. Then, eliminate $t$ from them, using algebra, and get an equation only in terms of the $x$ and $y$ coordinates of the point of intersection you originally assumed.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
We have been given two lines in the equation, let’s start working towards simplifying them first.
Given that,
\[\dfrac{tx}{a}-\dfrac{y}{b}+t=0\] ……………. (1)
\[\Rightarrow btx-ay=-abt\] ……………… (A)
\[\dfrac{x}{a}+\dfrac{ty}{b}-1=0\] ……………… (2)
\[\Rightarrow bx+aty=ab\] ……………… (B)
Thus, we have successfully simplified both the equations to represent something like the general equation of a line, which is $y=mx+c$.
Let the given curves intersect each other at a point\[P(h,k)\].
Therefore \[P(h,k)\]will satisfy both the curves. Let’s put the value of \[P(h,k)\] in both, equation (A) and equation (B). Doing so, we get :
\[bth-ak=-abt\] ……………. (3)
\[bh+atk=ab\] …………….. (4)
Multiply the equation (3) with $t$ and add with the equation (4).
Multiplying (3) with $t$, we will get the equation $b{{t}^{2}}h-akt=-ab{{t}^{2}}$
Now, let’s add the new equation we got after multiplying (3), to (4). Doing so, we get :
\[\left( b{{t}^{2}}h-akt=-ab{{t}^{2}} \right)\]
\[bh+atk=ab\]
----------------
\[\Rightarrow bh+b{{t}^{2}}h=ab-ab{{t}^{2}}\]
\[\Rightarrow bh\left( 1+{{t}^{2}} \right)=ab\left( 1-{{t}^{2}} \right)\]
$\Rightarrow h=\dfrac{a(1-{{t}^{2}})}{(1+{{t}^{2}})}$
\[\Rightarrow \dfrac{h}{a}=\dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
Squaring both sides, we get :
\[\Rightarrow {{\left( \dfrac{h}{a} \right)}^{2}}={{\left( \dfrac{\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……….. (5)
Put the value\[h=\dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\] in equation (4), we get
\[b\left( \dfrac{a\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)} \right)+atk=ab\]
\[\Rightarrow tk=b-\dfrac{b\left( 1-{{t}^{2}} \right)}{\left( 1+{{t}^{2}} \right)}\]
\[\Rightarrow k=\dfrac{b}{t}\left( \dfrac{1+{{t}^{2}}-1+{{t}^{2}}}{1+{{t}^{2}}} \right)\]
\[\Rightarrow k=\dfrac{2bt}{1+{{t}^{2}}}\]
\[\Rightarrow \dfrac{k}{b}=\dfrac{2t}{1+{{t}^{2}}}\]
Squaring both sides, we get
\[\Rightarrow {{\left( \dfrac{k}{b} \right)}^{2}}={{\left( \dfrac{2t}{1+{{t}^{2}}} \right)}^{2}}\]
\[\Rightarrow \dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\] ……………. (6)
On adding equation (5) and equation (6), we get :
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
----------------------
\[\dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{{{\left( 1-{{t}^{2}} \right)}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}+\dfrac{4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=\dfrac{1+{{t}^{4}}-2{{t}^{2}}+4{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}=\dfrac{1+{{t}^{4}}+2{{t}^{2}}}{{{\left( 1+{{t}^{2}} \right)}^{2}}}\]
\[\Rightarrow \dfrac{{{h}^{2}}}{{{a}^{2}}}+\dfrac{{{k}^{2}}}{{{b}^{2}}}=1\] This is the locus of point of intersection in \[(h,k)\].
Now, to finally find our locus in terms of $x$ and $y$, all we have to do is this :
Replace \[(h,k)\to (x,y)\]. Doing so, we get :
\[\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\]
Therefore, we can say that the locus of points of intersection of a given curve is an ellipse.
Note: The given equations are in parametric from with parameter $t$. For different values of $t$, we get a different equation of straight line.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
