Answer
Verified
491.7k+ views
Hint: Write the equation of chord and satisfy the given point and use formula for midpoint which is \[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\].
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE