
Find the locus of the midpoint of the chord of the parabola \[{{y}^{2}}=4ax\], which passes through the point \[\left( 3b,b \right)\].
Answer
608.1k+ views
Hint: Write the equation of chord and satisfy the given point and use formula for midpoint which is \[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\].
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Complete step-by-step answer:
We are given a chord of the parabola which passes through the point \[\left( 3b,b \right)\].
Here, we have to find the locus of midpoint of a given chord.
Let the midpoint of the given chord be \[\left( h,k \right)\].
We know that any general point on parabola \[P\left( t \right)\] is \[\left( a{{t}^{2}},2at \right)\].
So, we get point \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\]
We know that equation of any line passing through \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\] is
\[\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)\]
Therefore, we get equation of chord passing through \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)\]
Since we know that,
\[\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)\]
Therefore, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)\]
By cancelling the like terms, we get,
\[\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}\]
After cross multiplying the above equation, we get,
\[\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)\]
Simplifying the equation, we get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}\]
Finally, we get
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)\]
Now, we know that midpoint say \[\left( x,y \right)\] of any line joining points \[\left( {{x}_{1}},{{y}_{1}} \right)\] and \[\left( {{x}_{2}},{{y}_{2}} \right)\]is:
\[x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}\] and \[y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}\]
Therefore, we get the midpoint \[\left( h,k \right)\] of chord joining \[R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)\] and point \[Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)\] as:
\[h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)\]
\[k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)\]
Taking 2a common from equation \[\left( iii \right)\], we get,
\[k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}\].
Therefore, we get,
\[\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)\]
Taking ‘a’ common from equation\[\left( ii \right)\], we get,
\[h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}\]
Or, \[\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}\]
Since, we know that \[{{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}\]
Now, we subtract 2ab from both sides. We get,
\[{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab\]
Therefore, we get,
\[\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Now, we put the value of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] from equation (iv). We get,
\[\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}\]
Or \[2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}\]
By dividing both sides by 2, we get,
\[{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)\]
Now, we will put the values of \[\left( {{t}_{1}}+{{t}_{2}} \right)\] and \[\left( {{t}_{1}}{{t}_{2}} \right)\] from equation \[\left( iv \right)\]and \[\left( v \right)\] in equation \[\left( i \right)\].
We get,
\[y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x\]
\[\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x\]
\[\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x\]
By cancelling the like terms, we get,
\[\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x\]
After simplifying and cross-multiplying above equation, we get,
\[\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa\]
Now, we are given that this chord passes through point \[\left( 3b,b \right)\].
Therefore, we will put \[x=3b\] and \[y=b\].
We get,
\[bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a\]
\[\Rightarrow bk-{{k}^{2}}+2ha=6ab\]
By transposing all the terms to one side,
We get,
\[{{k}^{2}}-bk-2ha+6ab=0\]
Now, to get the locus, we will replace h by x and k by y. We get,
\[{{y}^{2}}-by-2ax+6ab=0\]
So, the locus of the midpoint of chord passing through \[\left( 3b,b \right)\] is \[{{y}^{2}}-by-2ax+6ab=0\].
Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say \[\left( {{x}_{1}},{{y}_{1}} \right)\] which is \[\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)\] and put \[\left( h,k \right)\] in place of \[\left( {{x}_{1}},{{y}_{1}} \right)\] and point through which chord in passing [here (3b,b)] in place of \[\left( x,y \right)\] to get locus of midpoint of chord.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

