 Questions & Answers    Question Answers

# Find the locus of the midpoint of the chord of the parabola ${{y}^{2}}=4ax$, which passes through the point $\left( 3b,b \right)$.  Answer Verified
Hint: Write the equation of chord and satisfy the given point and use formula for midpoint which is $x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$.

Complete step-by-step answer:
We are given a chord of the parabola which passes through the point $\left( 3b,b \right)$.
Here, we have to find the locus of midpoint of a given chord. Let the midpoint of the given chord be $\left( h,k \right)$.
We know that any general point on parabola $P\left( t \right)$ is $\left( a{{t}^{2}},2at \right)$.
So, we get point $R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$ and point $Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$
We know that equation of any line passing through $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is
$\left( y-{{y}_{1}} \right)=\dfrac{\left( {{y}_{2}}-{{y}_{1}} \right)}{\left( {{x}_{2}}-{{x}_{1}} \right)}\left( x-{{x}_{1}} \right)$
Therefore, we get equation of chord passing through $R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$ and point $Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$ as,
$\left( y-2a{{t}_{1}} \right)=\dfrac{\left( 2a{{t}_{2}}-2a{{t}_{1}} \right)}{\left( at_{2}^{2}-at_{1}^{2} \right)}\left( x-at_{1}^{2} \right)$
By cancelling the like terms, we get,
$\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( t_{2}^{2}-t_{1}^{2} \right)}\left( x-at_{1}^{2} \right)$
Since we know that,
$\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$
Therefore, we get,
$\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( {{t}_{2}}-{{t}_{1}} \right)}{\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}\left( x-at_{1}^{2} \right)$
By cancelling the like terms, we get,
$\left( y-2a{{t}_{1}} \right)=\dfrac{2\left( x-at_{1}^{2} \right)}{\left( {{t}_{2}}+{{t}_{1}} \right)}$
After cross multiplying the above equation, we get,
$\left( y-2a{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)=2\left( x-at_{1}^{2} \right)$
Simplifying the equation, we get,
$y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}-2at_{1}^{2}=2x-2at_{1}^{2}$
Finally, we get
$y\left( {{t}_{2}}+{{t}_{1}} \right)-2a{{t}_{1}}{{t}_{2}}=2x.....\left( i \right)$
Now, we know that midpoint say $\left( x,y \right)$ of any line joining points $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$is:
$x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}$ and $y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$
Therefore, we get the midpoint $\left( h,k \right)$ of chord joining $R\left( {{t}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$ and point $Q\left( {{t}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$ as:
$h=\dfrac{at_{1}^{2}+at_{2}^{2}}{2}....\left( ii \right)$
$k=\dfrac{2a{{t}_{1}}+2a{{t}_{2}}}{2}....\left( iii \right)$
Taking 2a common from equation $\left( iii \right)$, we get,
$k=\dfrac{2a\left( {{t}_{1}}+{{t}_{2}} \right)}{2}$.
Therefore, we get,
$\dfrac{k}{a}=\left( {{t}_{1}}+{{t}_{2}} \right)....\left( iv \right)$
Taking ‘a’ common from equation$\left( ii \right)$, we get,
$h=\dfrac{a\left( t_{1}^{2}+t_{2}^{2} \right)}{2}$
Or, $\dfrac{2h}{a}=t_{1}^{2}+t_{2}^{2}$
Since, we know that ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$
Now, we subtract 2ab from both sides. We get,
${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$
Therefore, we get,
$\dfrac{2h}{a}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}$
Now, we put the value of $\left( {{t}_{1}}+{{t}_{2}} \right)$ from equation (iv). We get,
$\dfrac{2h}{a}={{\left( \dfrac{k}{a} \right)}^{2}}-2{{t}_{1}}{{t}_{2}}$
Or $2{{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{{{a}^{2}}}-\dfrac{2h}{a}$
By dividing both sides by 2, we get,
${{t}_{1}}{{t}_{2}}=\dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a}.....\left( v \right)$
Now, we will put the values of $\left( {{t}_{1}}+{{t}_{2}} \right)$ and $\left( {{t}_{1}}{{t}_{2}} \right)$ from equation $\left( iv \right)$and $\left( v \right)$ in equation $\left( i \right)$.
We get,
$y\left( {{t}_{2}}+{{t}_{1}} \right)-2a\left( {{t}_{1}}{{t}_{2}} \right)=2x$
$\Rightarrow y\left( \dfrac{k}{a} \right)-2a\left( \dfrac{{{k}^{2}}}{2{{a}^{2}}}-\dfrac{h}{a} \right)=2x$
$\Rightarrow \dfrac{yk}{a}-2a\left( \dfrac{{{k}^{2}}-2ha}{2{{a}^{2}}} \right)=2x$
By cancelling the like terms, we get,
$\Rightarrow \dfrac{yk}{a}-\dfrac{\left( {{k}^{2}}-2ha \right)}{a}=2x$
After simplifying and cross-multiplying above equation, we get,
$\left( yk \right)-\left( {{k}^{2}}-2ha \right)=2xa$
Now, we are given that this chord passes through point $\left( 3b,b \right)$.
Therefore, we will put $x=3b$ and $y=b$.
We get,
$bk-\left( {{k}^{2}}-2ha \right)=2\left( 3b \right)a$
$\Rightarrow bk-{{k}^{2}}+2ha=6ab$
By transposing all the terms to one side,
We get,
${{k}^{2}}-bk-2ha+6ab=0$
Now, to get the locus, we will replace h by x and k by y. We get,
${{y}^{2}}-by-2ax+6ab=0$
So, the locus of the midpoint of chord passing through $\left( 3b,b \right)$ is ${{y}^{2}}-by-2ax+6ab=0$.

Note: In these types of questions, we can directly write the equation of chord with respect to mid-point say $\left( {{x}_{1}},{{y}_{1}} \right)$ which is $\left( y-{{y}_{1}} \right)=\dfrac{2a}{{{y}_{1}}}\left( x-{{x}_{1}} \right)$ and put $\left( h,k \right)$ in place of $\left( {{x}_{1}},{{y}_{1}} \right)$ and point through which chord in passing [here (3b,b)] in place of $\left( x,y \right)$ to get locus of midpoint of chord.
Bookmark added to your notes.
View Notes
The Language of Mathematics  Determinant to Find the Area of a Triangle  The Voice of the Rain Summary  The Journey To the End of The Earth Summary  What are the Domains of the Earth  The Tale of The Custard Dragon Summary  The Rime of the Ancient Mariner Summary  The Ghat of the Only World Summary  The Constitution of India  The Concept of Power  