Answer

Verified

427.2k+ views

Hint: Use the slope-point form$\left( {y - y_1} \right) = m\left( {x - x_1} \right)$to find the equation of the tangent and find the chord of contact. Then use the condition that the discriminant is zero at the point of tangency to find the required locus.

The given equation of the parabola is

${y^2} = 4x$ …(1)

We find that$a = 1$

Let P and Q be points on the parabola. PQ is a chord for the parabola ${y^2} = 4x$

Let $M\left( {h,k} \right)$be the midpoint of the chord PQ of the parabola.

At$M\left( {h,k} \right)$, equation (1) becomes

${k^2} = 4ah$

${k^2} - 4ah = 0$ …(2)

Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope$m$is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$

We get the slope by differentiating \[{y^2} = 4ax\]with respect to$x$.

So, let us differentiate equation (1) with respect to$x$to find its slope.

$

{y^2} = 4ax \\

2y\dfrac{{dy}}{{dx}} = 4a \\

\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\

$

$m = \dfrac{{2a}}{{y_1}}$

Equation of tangent to the parabola \[{y^2} = 4ax\] at any point $A\left( {x_1,y_1} \right)$is given by the slope-point form as

$

y - y_1 = m\left( {x - x_1} \right) \\

y - y_1 = \dfrac{{2a}}{{y_1}}\left( {x - x_1} \right) \\

$

$yy_1 - y{1^2} = 2ax - 2ax_1$ …(3)

\[{y^2} = 4ax\]at$A\left( {x_1,y_1} \right)$ is

$y{1^2} = 4ax_1$ …(4)

Substitute (4) in (3),

$

yy_1 - y{1^2} = 2ax - 2ax_1 \\

yy_1 - 4ax_1 = 2ax - 2ax_1 \\

yy_1 = 2a\left( {x + x_1} \right) \\

$

Since, T=0 for the chord of contact, we get the equation for chord of contact as \[yy_1 - 2a\left( {x + x_1} \right) = 0\]

Hence, the equation for chord of contact is

\[yy_1 - 2a\left( {x + x_1} \right) = 0\] …(5)

At$M\left( {h,k} \right)$, equation (5) becomes

$ky - 2ax - 2ah = 0$ …(6)

Equating equations (2) and (6) and putting $a = 1$ we get the equation of the chord PQ.

${k^2} - 4ah = ky - 2ax - 2ah$

${k^2} - 2h = ky - 2x$

$y = k - \dfrac{{2h}}{k} + \dfrac{{2x}}{k}$ …(7)

The chord touches the parabola

${y^2} + 4bx = 0$ …(8)

Put equation (7) in (8)

$

{\left[ {k - \dfrac{{2h}}{k} + \dfrac{{2x}}{k}} \right]^2} + 4bx = 0 \\

{\left[ {\dfrac{{2x}}{k} + \left( {\dfrac{{{k^2} - 2h}}{k}} \right)} \right]^2} + 4bx = 0 \\

\dfrac{{4{x^2}}}{{{k^2}}} + \dfrac{{{{\left( {{k^2} - 2h} \right)}^2}}}{{{k^2}}} + 2\left( {\dfrac{{2x}}{k}} \right)\left( {\dfrac{{{k^2} - 2h}}{k}} \right) + 4bx = 0 \\

\dfrac{1}{{{k^2}}}\left[ {4{x^2} + {k^2} + 4{h^2} - 4{k^2}h + 4x\left( {{k^2} - 2h} \right)} \right] + 4bx = 0 \\

4{x^2} + {k^2} + 4{h^2} - 4{k^2}h + 4x{k^2} - 8xh = - 4bx{k^2} \\

4{x^2} + 4x\left( {{k^2} - 2h} \right) + 4h\left( {h - {k^2}} \right) + {k^2} = - 4bx{k^2} \\

$

$4{x^2} + 4x\left( {{k^2} - 2h + b{k^2}} \right) + \left( {4{h^2} - 4h{k^2} + {k^2}} \right) = 0$ …(9)

Equation (9) is of the form,$A{x^2} + Bx + C = 0$.

$A = 4,B = 4\left( {{k^2} - 2h + b{k^2}} \right),C = 4{h^2} - 4h{k^2} + {k^2}$

The condition for tangency is that the discriminant ${B^2} - 4AC = 0$

Since, the locus of the middle points of the chords for the parabola ${y^2} = 4x$which touches the parabola ${y^2} + 4bx = 0$ is required, we use this condition for tangency.

$

{\left[ {4\left( {{k^2} - 2h + b{k^2}} \right)} \right]^2} = 16\left( {4{h^2} - 4h{k^2} + {k^2}} \right) \\

16\left( {{k^4} + 4{h^2} + {b^2}{k^4} - 4{k^2}h - 4hb{k^2} + 2b{k^4}} \right) = 16\left( {4{h^2} - 4h{k^2} + {k^2}} \right) \\

{k^4}\left( {1 + {b^2} + 2b} \right) - 4hb{k^2} - {k^2} = 0 \\

{k^4}{\left( {1 + b} \right)^2} - {k^2}\left( {4hb + 1} \right) = 0 \\

{k^2}\left[ {{k^2}{{\left( {1 + b} \right)}^2} - \left( {4hb + 1} \right)} \right] = 0 \\

$

${k^2}{\left( {1 + b} \right)^2} - \left( {4hb + 1} \right) = 0$ …(10)

Replacing points $\left( {h,k} \right)$ by $\left( {x,y} \right)$in the equation (10), we get

${y^2}{\left( {1 + b} \right)^2} - \left( {4bx + 1} \right) = 0$is the required locus.

Note: The equation of the chord is found for the first parabola at the midpoint $\left( {h,k} \right)$and since this touches the other parabola, substitute one value in the other to get an equation. From that equation, use the condition for tangency ($D = 0$) to find the required locus, as it just touches the other parabola.

The given equation of the parabola is

${y^2} = 4x$ …(1)

We find that$a = 1$

Let P and Q be points on the parabola. PQ is a chord for the parabola ${y^2} = 4x$

Let $M\left( {h,k} \right)$be the midpoint of the chord PQ of the parabola.

At$M\left( {h,k} \right)$, equation (1) becomes

${k^2} = 4ah$

${k^2} - 4ah = 0$ …(2)

Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope$m$is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$

We get the slope by differentiating \[{y^2} = 4ax\]with respect to$x$.

So, let us differentiate equation (1) with respect to$x$to find its slope.

$

{y^2} = 4ax \\

2y\dfrac{{dy}}{{dx}} = 4a \\

\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\

$

$m = \dfrac{{2a}}{{y_1}}$

Equation of tangent to the parabola \[{y^2} = 4ax\] at any point $A\left( {x_1,y_1} \right)$is given by the slope-point form as

$

y - y_1 = m\left( {x - x_1} \right) \\

y - y_1 = \dfrac{{2a}}{{y_1}}\left( {x - x_1} \right) \\

$

$yy_1 - y{1^2} = 2ax - 2ax_1$ …(3)

\[{y^2} = 4ax\]at$A\left( {x_1,y_1} \right)$ is

$y{1^2} = 4ax_1$ …(4)

Substitute (4) in (3),

$

yy_1 - y{1^2} = 2ax - 2ax_1 \\

yy_1 - 4ax_1 = 2ax - 2ax_1 \\

yy_1 = 2a\left( {x + x_1} \right) \\

$

Since, T=0 for the chord of contact, we get the equation for chord of contact as \[yy_1 - 2a\left( {x + x_1} \right) = 0\]

Hence, the equation for chord of contact is

\[yy_1 - 2a\left( {x + x_1} \right) = 0\] …(5)

At$M\left( {h,k} \right)$, equation (5) becomes

$ky - 2ax - 2ah = 0$ …(6)

Equating equations (2) and (6) and putting $a = 1$ we get the equation of the chord PQ.

${k^2} - 4ah = ky - 2ax - 2ah$

${k^2} - 2h = ky - 2x$

$y = k - \dfrac{{2h}}{k} + \dfrac{{2x}}{k}$ …(7)

The chord touches the parabola

${y^2} + 4bx = 0$ …(8)

Put equation (7) in (8)

$

{\left[ {k - \dfrac{{2h}}{k} + \dfrac{{2x}}{k}} \right]^2} + 4bx = 0 \\

{\left[ {\dfrac{{2x}}{k} + \left( {\dfrac{{{k^2} - 2h}}{k}} \right)} \right]^2} + 4bx = 0 \\

\dfrac{{4{x^2}}}{{{k^2}}} + \dfrac{{{{\left( {{k^2} - 2h} \right)}^2}}}{{{k^2}}} + 2\left( {\dfrac{{2x}}{k}} \right)\left( {\dfrac{{{k^2} - 2h}}{k}} \right) + 4bx = 0 \\

\dfrac{1}{{{k^2}}}\left[ {4{x^2} + {k^2} + 4{h^2} - 4{k^2}h + 4x\left( {{k^2} - 2h} \right)} \right] + 4bx = 0 \\

4{x^2} + {k^2} + 4{h^2} - 4{k^2}h + 4x{k^2} - 8xh = - 4bx{k^2} \\

4{x^2} + 4x\left( {{k^2} - 2h} \right) + 4h\left( {h - {k^2}} \right) + {k^2} = - 4bx{k^2} \\

$

$4{x^2} + 4x\left( {{k^2} - 2h + b{k^2}} \right) + \left( {4{h^2} - 4h{k^2} + {k^2}} \right) = 0$ …(9)

Equation (9) is of the form,$A{x^2} + Bx + C = 0$.

$A = 4,B = 4\left( {{k^2} - 2h + b{k^2}} \right),C = 4{h^2} - 4h{k^2} + {k^2}$

The condition for tangency is that the discriminant ${B^2} - 4AC = 0$

Since, the locus of the middle points of the chords for the parabola ${y^2} = 4x$which touches the parabola ${y^2} + 4bx = 0$ is required, we use this condition for tangency.

$

{\left[ {4\left( {{k^2} - 2h + b{k^2}} \right)} \right]^2} = 16\left( {4{h^2} - 4h{k^2} + {k^2}} \right) \\

16\left( {{k^4} + 4{h^2} + {b^2}{k^4} - 4{k^2}h - 4hb{k^2} + 2b{k^4}} \right) = 16\left( {4{h^2} - 4h{k^2} + {k^2}} \right) \\

{k^4}\left( {1 + {b^2} + 2b} \right) - 4hb{k^2} - {k^2} = 0 \\

{k^4}{\left( {1 + b} \right)^2} - {k^2}\left( {4hb + 1} \right) = 0 \\

{k^2}\left[ {{k^2}{{\left( {1 + b} \right)}^2} - \left( {4hb + 1} \right)} \right] = 0 \\

$

${k^2}{\left( {1 + b} \right)^2} - \left( {4hb + 1} \right) = 0$ …(10)

Replacing points $\left( {h,k} \right)$ by $\left( {x,y} \right)$in the equation (10), we get

${y^2}{\left( {1 + b} \right)^2} - \left( {4bx + 1} \right) = 0$is the required locus.

Note: The equation of the chord is found for the first parabola at the midpoint $\left( {h,k} \right)$and since this touches the other parabola, substitute one value in the other to get an equation. From that equation, use the condition for tangency ($D = 0$) to find the required locus, as it just touches the other parabola.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The cell wall of prokaryotes are made up of a Cellulose class 9 biology CBSE

What organs are located on the left side of your body class 11 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE