Answer

Verified

409.5k+ views

Hint: Using the slope-point form, find the equation of the tangent and the chord of contact. Using the formula \[L = \dfrac{4}{{{m^2}}}\sqrt {a\left( {1 + {m^2}} \right)\left( {a - mc} \right)} \] to find the length of the chord, and equating it to \[\;2b\], find the locus.

The given equation of the parabola is

${y^2} = 4x$ …(1)

Let P and Q be points on the parabola. PQ is a chord for the parabola ${y^2} = 4x$

Length of the chord PQ=\[\;2b\]

Let $M\left( {h,k} \right)$be the midpoint of the chord PQ of the parabola.

At$M\left( {h,k} \right)$, equation (1) becomes

${k^2} = 4ah$

${k^2} - 4ah = 0$ …(2)

Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope $m$ is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$

We get the slope by differentiating \[{y^2} = 4ax\] with respect to $x$.

So, let us differentiate equation (1) with respect to $x$ to find its slope.

$

{y^2} = 4ax \\

2y\dfrac{{dy}}{{dx}} = 4a \\

\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\

$

$m = \dfrac{{2a}}{{y_1}}$

Equation of tangent to the parabola \[{y^2} = 4ax\] at any point $A\left( {x_1,y_1} \right)$ is given by the slope-point form as

$

y - y_1 = m\left( {x - x_1} \right) \\

y - y_1 = \dfrac{{2a}}{{y_1}}\left( {x - x_1} \right) \\

$

$yy_1 - y{1^2} = 2ax - 2ax_1$ …(3)

\[{y^2} = 4ax\]at$A\left( {x_1,y_1} \right)$ is

$y{1^2} = 4ax_1$ …(4)

Substitute (4) in (3),

$

yy_1 - y{1^2} = 2ax - 2ax_1 \\

yy_1 - 4ax_1 = 2ax - 2ax_1 \\

yy_1 = 2a\left( {x + x_1} \right) \\

$

Since, T=0 for the chord of contact, we get the equation for chord of contact as \[yy_1 - 2a\left( {x + x_1} \right) = 0\]

Hence, the equation for chord of contact is

\[yy_1 - 2a\left( {x + x_1} \right) = 0\] …(5)

At $M\left( {h,k} \right)$, equation (5) becomes

$ky - 2ax - 2ah = 0$ …(6)

Equating equations (2) and (6) we get

${k^2} - 4ah = ky - 2ax - 2ah$

${k^2} - 2ah = ky - 2ax$ …(7)

Rearranging equation (7) in the form $y = mx + c$

$

{k^2} - 2ah = ky - 2ax \\

ky = {k^2} - 2ah + 2ax \\

y = \dfrac{{2a}}{k}x + \dfrac{{{k^2} - 2ah}}{k} \\

$

Comparing with $y = mx + c$, we get

$m = \dfrac{{2a}}{k},c = \dfrac{{{k^2} - 2ah}}{k}$ …(8)

Length of the chord for the parabola ${y^2} = 4x$ is given by

\[L = \dfrac{4}{{{m^2}}}\sqrt {a\left( {1 + {m^2}} \right)\left( {a - mc} \right)} \]

Length of the chord is given as\[\;2b\].

Substituting (8) in this we get,

$

2b = \dfrac{4}{{{{\left( {\dfrac{{2a}}{k}} \right)}^2}}}\sqrt {a\left( {1 + \dfrac{{4{a^2}}}{{{k^2}}}} \right)\left[ {a - \left( {\dfrac{{2a}}{k}} \right)\left( {\dfrac{{{k^2} - 2ah}}{k}} \right)} \right]} \\

2b = \dfrac{{{k^2}}}{{{a^2}}}\sqrt {a\left( {\dfrac{{{k^2} + 4{a^2}}}{{{k^2}}}} \right)\left( {\dfrac{{a{k^2} - 2a{k^2} + 4{a^2}h}}{{{k^2}}}} \right)} \\

$

Squaring on both sides,

$

4{a^4}{b^2} = \dfrac{{{k^4}}}{{{k^4}}}\left[ {a\left( {{k^2} + 4{a^2}} \right)\left( {a{k^2} - 2a{k^2} + 4{a^2}h} \right)} \right] \\

4{a^3}{b^2} = \left( {{k^2} + 4{a^2}} \right)a\left( {2ah - {k^2}} \right) \\

4{a^2}{b^2} = \left( {{k^2} + 4{a^2}} \right)\left( {2ah - {k^2}} \right) \\

$

When we replace the point $\left( {h,k} \right)$by$\left( {x,y} \right)$, we will get the locus of the middle points of the chord of length $2b$ to the parabola ${y^2} = 4x$

\[4{a^2}{b^2} = \left( {{y^2} + 4{a^2}} \right)\left( {2ax - {y^2}} \right)\] is the required locus.

Note: Memorizing the formula for length of the chord and the equation of the chord will make this very simple instead of deriving it each time. Finding the slope and intercept from the equation of the chord and substituting it in the length of the chord formula gives the locus of the middle points of the chord of length $2b$ to the parabola ${y^2} = 4x$.

The given equation of the parabola is

${y^2} = 4x$ …(1)

Let P and Q be points on the parabola. PQ is a chord for the parabola ${y^2} = 4x$

Length of the chord PQ=\[\;2b\]

Let $M\left( {h,k} \right)$be the midpoint of the chord PQ of the parabola.

At$M\left( {h,k} \right)$, equation (1) becomes

${k^2} = 4ah$

${k^2} - 4ah = 0$ …(2)

Slope Point form to find the equation of a line passing through a point $\left( {x_1,y_1} \right)$ with a slope $m$ is written as $\left( {y - y_1} \right) = m\left( {x - x_1} \right)$

We get the slope by differentiating \[{y^2} = 4ax\] with respect to $x$.

So, let us differentiate equation (1) with respect to $x$ to find its slope.

$

{y^2} = 4ax \\

2y\dfrac{{dy}}{{dx}} = 4a \\

\dfrac{{dy}}{{dx}} = \dfrac{{2a}}{y} \\

$

$m = \dfrac{{2a}}{{y_1}}$

Equation of tangent to the parabola \[{y^2} = 4ax\] at any point $A\left( {x_1,y_1} \right)$ is given by the slope-point form as

$

y - y_1 = m\left( {x - x_1} \right) \\

y - y_1 = \dfrac{{2a}}{{y_1}}\left( {x - x_1} \right) \\

$

$yy_1 - y{1^2} = 2ax - 2ax_1$ …(3)

\[{y^2} = 4ax\]at$A\left( {x_1,y_1} \right)$ is

$y{1^2} = 4ax_1$ …(4)

Substitute (4) in (3),

$

yy_1 - y{1^2} = 2ax - 2ax_1 \\

yy_1 - 4ax_1 = 2ax - 2ax_1 \\

yy_1 = 2a\left( {x + x_1} \right) \\

$

Since, T=0 for the chord of contact, we get the equation for chord of contact as \[yy_1 - 2a\left( {x + x_1} \right) = 0\]

Hence, the equation for chord of contact is

\[yy_1 - 2a\left( {x + x_1} \right) = 0\] …(5)

At $M\left( {h,k} \right)$, equation (5) becomes

$ky - 2ax - 2ah = 0$ …(6)

Equating equations (2) and (6) we get

${k^2} - 4ah = ky - 2ax - 2ah$

${k^2} - 2ah = ky - 2ax$ …(7)

Rearranging equation (7) in the form $y = mx + c$

$

{k^2} - 2ah = ky - 2ax \\

ky = {k^2} - 2ah + 2ax \\

y = \dfrac{{2a}}{k}x + \dfrac{{{k^2} - 2ah}}{k} \\

$

Comparing with $y = mx + c$, we get

$m = \dfrac{{2a}}{k},c = \dfrac{{{k^2} - 2ah}}{k}$ …(8)

Length of the chord for the parabola ${y^2} = 4x$ is given by

\[L = \dfrac{4}{{{m^2}}}\sqrt {a\left( {1 + {m^2}} \right)\left( {a - mc} \right)} \]

Length of the chord is given as\[\;2b\].

Substituting (8) in this we get,

$

2b = \dfrac{4}{{{{\left( {\dfrac{{2a}}{k}} \right)}^2}}}\sqrt {a\left( {1 + \dfrac{{4{a^2}}}{{{k^2}}}} \right)\left[ {a - \left( {\dfrac{{2a}}{k}} \right)\left( {\dfrac{{{k^2} - 2ah}}{k}} \right)} \right]} \\

2b = \dfrac{{{k^2}}}{{{a^2}}}\sqrt {a\left( {\dfrac{{{k^2} + 4{a^2}}}{{{k^2}}}} \right)\left( {\dfrac{{a{k^2} - 2a{k^2} + 4{a^2}h}}{{{k^2}}}} \right)} \\

$

Squaring on both sides,

$

4{a^4}{b^2} = \dfrac{{{k^4}}}{{{k^4}}}\left[ {a\left( {{k^2} + 4{a^2}} \right)\left( {a{k^2} - 2a{k^2} + 4{a^2}h} \right)} \right] \\

4{a^3}{b^2} = \left( {{k^2} + 4{a^2}} \right)a\left( {2ah - {k^2}} \right) \\

4{a^2}{b^2} = \left( {{k^2} + 4{a^2}} \right)\left( {2ah - {k^2}} \right) \\

$

When we replace the point $\left( {h,k} \right)$by$\left( {x,y} \right)$, we will get the locus of the middle points of the chord of length $2b$ to the parabola ${y^2} = 4x$

\[4{a^2}{b^2} = \left( {{y^2} + 4{a^2}} \right)\left( {2ax - {y^2}} \right)\] is the required locus.

Note: Memorizing the formula for length of the chord and the equation of the chord will make this very simple instead of deriving it each time. Finding the slope and intercept from the equation of the chord and substituting it in the length of the chord formula gives the locus of the middle points of the chord of length $2b$ to the parabola ${y^2} = 4x$.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a book review which you have recently read in class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light

What I want should not be confused with total inactivity class 12 english CBSE