
How do you find the limit of \[\dfrac{x-\cos x}{x}\] as x approaches to \[\infty \] ?
Answer
541.8k+ views
Hint: In the given question, we have been asked to find the limit of a given function. In order to solve the question first we need to rewrite the expression by expanding the limits because the limit of a sum is the sum of the limits and then we have to solve the first term given in the expression using L-hospital rule. And the second term by squeeze theorem. Then combined the both terms and simplified further to get the answer.
Complete step-by-step answer:
We have given that,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)\]
Rewritten the above as,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x}-\dfrac{\cos x}{x} \right)\]
Separating the terms, we obtained
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that,
Using the L-hospital’s rule i.e. \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]
\[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)=\dfrac{1}{1}=1\]
Now, we have
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
Now,
Taking \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that the range of the trigonometric function \[\cos x\] is \[-1\le \cos x\le 1\]
Using the squeeze theorem that has three steps to follow i.e. if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Applying the theorem, we obtained
Let \[f\left( x \right)\ =\dfrac{1}{x}\cos x,\ g\left( x \right)=-\dfrac{1}{x}\ and\ h\left( x \right)\ =\dfrac{1}{x}\]
Thus,
\[\Rightarrow -\dfrac{1}{x}\ \le \dfrac{1}{x}\cos x\le \dfrac{1}{x}\]
Now,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( -\dfrac{1}{x} \right)=0=L\]
As we are dividing a very small number i.e. 1 by a large number that is continually increasing.
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x}\cos x \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=L=0\]
Thus, at last
We have,
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=1-0=1\]
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=1\]
Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the finding the value of limit of a given expression using l’hospital rule which states that \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\] and by using the squeeze theorem which states that if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Complete step-by-step answer:
We have given that,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)\]
Rewritten the above as,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x}-\dfrac{\cos x}{x} \right)\]
Separating the terms, we obtained
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that,
Using the L-hospital’s rule i.e. \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]
\[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)=\dfrac{1}{1}=1\]
Now, we have
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
Now,
Taking \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that the range of the trigonometric function \[\cos x\] is \[-1\le \cos x\le 1\]
Using the squeeze theorem that has three steps to follow i.e. if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Applying the theorem, we obtained
Let \[f\left( x \right)\ =\dfrac{1}{x}\cos x,\ g\left( x \right)=-\dfrac{1}{x}\ and\ h\left( x \right)\ =\dfrac{1}{x}\]
Thus,
\[\Rightarrow -\dfrac{1}{x}\ \le \dfrac{1}{x}\cos x\le \dfrac{1}{x}\]
Now,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( -\dfrac{1}{x} \right)=0=L\]
As we are dividing a very small number i.e. 1 by a large number that is continually increasing.
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x}\cos x \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=L=0\]
Thus, at last
We have,
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=1-0=1\]
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=1\]
Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the finding the value of limit of a given expression using l’hospital rule which states that \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\] and by using the squeeze theorem which states that if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What is a transformer Explain the principle construction class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

