
How do you find the limit of \[\dfrac{x-\cos x}{x}\] as x approaches to \[\infty \] ?
Answer
446.1k+ views
Hint: In the given question, we have been asked to find the limit of a given function. In order to solve the question first we need to rewrite the expression by expanding the limits because the limit of a sum is the sum of the limits and then we have to solve the first term given in the expression using L-hospital rule. And the second term by squeeze theorem. Then combined the both terms and simplified further to get the answer.
Complete step-by-step answer:
We have given that,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)\]
Rewritten the above as,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x}-\dfrac{\cos x}{x} \right)\]
Separating the terms, we obtained
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that,
Using the L-hospital’s rule i.e. \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]
\[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)=\dfrac{1}{1}=1\]
Now, we have
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
Now,
Taking \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that the range of the trigonometric function \[\cos x\] is \[-1\le \cos x\le 1\]
Using the squeeze theorem that has three steps to follow i.e. if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Applying the theorem, we obtained
Let \[f\left( x \right)\ =\dfrac{1}{x}\cos x,\ g\left( x \right)=-\dfrac{1}{x}\ and\ h\left( x \right)\ =\dfrac{1}{x}\]
Thus,
\[\Rightarrow -\dfrac{1}{x}\ \le \dfrac{1}{x}\cos x\le \dfrac{1}{x}\]
Now,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( -\dfrac{1}{x} \right)=0=L\]
As we are dividing a very small number i.e. 1 by a large number that is continually increasing.
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x}\cos x \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=L=0\]
Thus, at last
We have,
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=1-0=1\]
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=1\]
Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the finding the value of limit of a given expression using l’hospital rule which states that \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\] and by using the squeeze theorem which states that if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Complete step-by-step answer:
We have given that,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)\]
Rewritten the above as,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x}-\dfrac{\cos x}{x} \right)\]
Separating the terms, we obtained
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that,
Using the L-hospital’s rule i.e. \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\]
\[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x}{x} \right)=\dfrac{1}{1}=1\]
Now, we have
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
Now,
Taking \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)\]
As we know that the range of the trigonometric function \[\cos x\] is \[-1\le \cos x\le 1\]
Using the squeeze theorem that has three steps to follow i.e. if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Applying the theorem, we obtained
Let \[f\left( x \right)\ =\dfrac{1}{x}\cos x,\ g\left( x \right)=-\dfrac{1}{x}\ and\ h\left( x \right)\ =\dfrac{1}{x}\]
Thus,
\[\Rightarrow -\dfrac{1}{x}\ \le \dfrac{1}{x}\cos x\le \dfrac{1}{x}\]
Now,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( -\dfrac{1}{x} \right)=0=L\]
As we are dividing a very small number i.e. 1 by a large number that is continually increasing.
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{1}{x}\cos x \right)=\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=L=0\]
Thus, at last
We have,
\[\Rightarrow 1-\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{\cos x}{x} \right)=1-0=1\]
Therefore,
\[\Rightarrow \underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{x-\cos x}{x} \right)=1\]
Hence, this is the required answer.
Note: While solving these types of problems, students need to be very careful while doing the calculation part to avoid making any type of error. They need to know about the concept of the finding the value of limit of a given expression using l’hospital rule which states that \[\underset{x\to \infty }{\mathop{\lim }}\,\left( \dfrac{f\left( x \right)}{g\left( x \right)} \right)=\underset{x\to \infty }{\mathop{\lim }}\,\dfrac{f'\left( x \right)}{g'\left( x \right)}\] and by using the squeeze theorem which states that if \[g\left( x \right)\le f\left( x \right)\le h\left( x \right)\ \] and \[\underset{x\to \infty }{\mathop{\lim }}\,g\left( x \right)=\underset{x\to \infty }{\mathop{\lim }}\,h\left( x \right)\ =L\] , then \[\underset{x\to \infty }{\mathop{\lim }}\,f\left( x \right)\ =L\] .
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
