Answer
Verified
424.8k+ views
Hint: Pythagoras theorem: For a right angled triangle the square of the hypotenuse is equal to the sum of the squares of the other two sides.
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Also we can find the hypotenuse of the triangle by the equation:
\[c = \sqrt {{a^2} + {b^2}} \]
So by using the above equation and substituting the values $a\;{\text{and}}\;b$ we can find the value of the hypotenuse.
Complete step by step solution:
Given
Legs of lengths 5 and 12
\[ \Rightarrow a = 5\;{\text{and}}\;b = 12..........................\left( i \right)\]
Now using this value we can draw a right angled triangle as below:
Now we need to find the hypotenuse such that we need to find the value of $c$:
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Now in order to find the value of$c$we need to take root of the LHS:
\[c = \sqrt {{a^2} + {b^2}} .............................\left( {ii} \right)\]
Now we have the values: \[a = 5\;{\text{and}}\;b = 12\]
Substituting the above values in (ii) we can write:
\[
c = \sqrt {{a^2} + {b^2}} \\
\Rightarrow c = \sqrt {{{\left( 5 \right)}^2} + {{\left( {12} \right)}^2}} \\
\Rightarrow c = \sqrt {25 + 144} \\
\Rightarrow c = \sqrt {169} \\
\Rightarrow c = 13 \\
\]
Therefore length of the hypotenuse of a right triangle with legs of lengths \[5\;{\text{and}}\;{\text{1}}2\;{\text{is}}\;13\].
Additional Information:
There are two types of Right angled triangle:
1. Isosceles Right angled triangle.
2. Scalene Right angled triangle.
Also in a right angled triangle the sum of the three angles is ${180^ \circ }$.
Note: Here care must be taken while taking the roots of different numbers. One of the most useful and widely used shapes in mathematics is the right angled triangle. It’s not only used in the Pythagoras theorem but also has a large area of development in the field of trigonometry consisting of sine, cosine, tangent etc.
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Also we can find the hypotenuse of the triangle by the equation:
\[c = \sqrt {{a^2} + {b^2}} \]
So by using the above equation and substituting the values $a\;{\text{and}}\;b$ we can find the value of the hypotenuse.
Complete step by step solution:
Given
Legs of lengths 5 and 12
\[ \Rightarrow a = 5\;{\text{and}}\;b = 12..........................\left( i \right)\]
Now using this value we can draw a right angled triangle as below:
Now we need to find the hypotenuse such that we need to find the value of $c$:
So on applying Pythagoras theorem to the above triangle we can write:
\[
{a^2} + {b^2} = {c^2} \\
\Rightarrow {c^2} = {a^2} + {b^2} \\
\]
Now in order to find the value of$c$we need to take root of the LHS:
\[c = \sqrt {{a^2} + {b^2}} .............................\left( {ii} \right)\]
Now we have the values: \[a = 5\;{\text{and}}\;b = 12\]
Substituting the above values in (ii) we can write:
\[
c = \sqrt {{a^2} + {b^2}} \\
\Rightarrow c = \sqrt {{{\left( 5 \right)}^2} + {{\left( {12} \right)}^2}} \\
\Rightarrow c = \sqrt {25 + 144} \\
\Rightarrow c = \sqrt {169} \\
\Rightarrow c = 13 \\
\]
Therefore length of the hypotenuse of a right triangle with legs of lengths \[5\;{\text{and}}\;{\text{1}}2\;{\text{is}}\;13\].
Additional Information:
There are two types of Right angled triangle:
1. Isosceles Right angled triangle.
2. Scalene Right angled triangle.
Also in a right angled triangle the sum of the three angles is ${180^ \circ }$.
Note: Here care must be taken while taking the roots of different numbers. One of the most useful and widely used shapes in mathematics is the right angled triangle. It’s not only used in the Pythagoras theorem but also has a large area of development in the field of trigonometry consisting of sine, cosine, tangent etc.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE