
Find the length of axes of the conic $9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$
$
A.{\text{ }}\dfrac{1}{2},9 \\
B.{\text{ 3,}}\dfrac{2}{5} \\
C.{\text{ }}1,\dfrac{2}{3} \\
D.{\text{ 3,2}} \\
$
Answer
605.4k+ views
Hint: In order to solve these types of question, firstly we have to convert the given equation into the equation of an ellipse by simplifying the equation into $\dfrac{{{{\left( {x - a} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y + b} \right)}^2}}}{{{b^2}}}$ = 0 such that we will get the value of $a$ and $b$ to get the length of major and minor axes and we will get our desired answer.
Complete step-by-step answer:
We have given that,
$9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {\left( {2y} \right)^2} + 4y + 1 = 0$
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {\left( {2y + 1} \right)^2} = 0$
Adding and subtracting square of $\left( { + 1, - 1} \right)$ on R.H.S, we get
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {1^2} - {1^2} + {\left( {2y + 1} \right)^2} = 0$
$\Rightarrow$ ${\left( {3x - 1} \right)^2} - 1 + {\left( {2y + 1} \right)^2} = 0$
$\Rightarrow$ ${\left( {3x - 1} \right)^2} + {\left( {2y + 1} \right)^2} = 1$
$\Rightarrow$ ${\left( {3\left( {x - \dfrac{1}{3}} \right)} \right)^2} + {\left( {2\left( {y + \dfrac{1}{2}} \right)} \right)^2} = 1$
$\Rightarrow$ $9{\left( {x - \dfrac{1}{3}} \right)^2} + 4{\left( {y + \dfrac{1}{2}} \right)^2} = 1$
Converting this into $\dfrac{{{{\left( {x - a} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y + b} \right)}^2}}}{{{b^2}}} - - - - - - \left( 1 \right)$,
Thus
${\dfrac{{\left( {x - \dfrac{1}{3}} \right)}}{{\dfrac{1}{9}}}^2} + {\dfrac{{\left( {y + \dfrac{1}{2}} \right)}}{{\dfrac{1}{4}}}^2} = 1$
$\Rightarrow$ ${\dfrac{{\left( {x - \dfrac{1}{3}} \right)}}{{{{\left( {\dfrac{1}{3}} \right)}^2}}}^2} + {\dfrac{{\left( {y + \dfrac{1}{2}} \right)}}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}^2} = 1 - - - - - \left( 2 \right)$
Hence this is the equation of ellipse.
Comparing equation (1) and (2), we get
Therefore,$a = \dfrac{1}{3}$ and $b = \dfrac{1}{2}$
Thus, $b > a$
Length of the major axes $ = 2b = 2 \times \dfrac{1}{2} = 1$
Length of minor axes $ = 2a = 2\dfrac{1}{3} = \dfrac{2}{3}$
Note: Whenever we face such a type of question the key concept is that we have to convert the given equation in the form of an ellipse equation such that we will easily find out the value of $a,b$ by comparing the equations .
Complete step-by-step answer:
We have given that,
$9{x^2} + 4{y^2} - 6x + 4y + 1 = 0$
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {\left( {2y} \right)^2} + 4y + 1 = 0$
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {\left( {2y + 1} \right)^2} = 0$
Adding and subtracting square of $\left( { + 1, - 1} \right)$ on R.H.S, we get
$\Rightarrow$ ${\left( {3x} \right)^2} - 6x + {1^2} - {1^2} + {\left( {2y + 1} \right)^2} = 0$
$\Rightarrow$ ${\left( {3x - 1} \right)^2} - 1 + {\left( {2y + 1} \right)^2} = 0$
$\Rightarrow$ ${\left( {3x - 1} \right)^2} + {\left( {2y + 1} \right)^2} = 1$
$\Rightarrow$ ${\left( {3\left( {x - \dfrac{1}{3}} \right)} \right)^2} + {\left( {2\left( {y + \dfrac{1}{2}} \right)} \right)^2} = 1$
$\Rightarrow$ $9{\left( {x - \dfrac{1}{3}} \right)^2} + 4{\left( {y + \dfrac{1}{2}} \right)^2} = 1$
Converting this into $\dfrac{{{{\left( {x - a} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y + b} \right)}^2}}}{{{b^2}}} - - - - - - \left( 1 \right)$,
Thus
${\dfrac{{\left( {x - \dfrac{1}{3}} \right)}}{{\dfrac{1}{9}}}^2} + {\dfrac{{\left( {y + \dfrac{1}{2}} \right)}}{{\dfrac{1}{4}}}^2} = 1$
$\Rightarrow$ ${\dfrac{{\left( {x - \dfrac{1}{3}} \right)}}{{{{\left( {\dfrac{1}{3}} \right)}^2}}}^2} + {\dfrac{{\left( {y + \dfrac{1}{2}} \right)}}{{{{\left( {\dfrac{1}{2}} \right)}^2}}}^2} = 1 - - - - - \left( 2 \right)$
Hence this is the equation of ellipse.
Comparing equation (1) and (2), we get
Therefore,$a = \dfrac{1}{3}$ and $b = \dfrac{1}{2}$
Thus, $b > a$
Length of the major axes $ = 2b = 2 \times \dfrac{1}{2} = 1$
Length of minor axes $ = 2a = 2\dfrac{1}{3} = \dfrac{2}{3}$
Note: Whenever we face such a type of question the key concept is that we have to convert the given equation in the form of an ellipse equation such that we will easily find out the value of $a,b$ by comparing the equations .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

