Answer
Verified
435.6k+ views
Hint: The inverse of the square matrix exists, where the determinant of the matrix does not equal to zero i.e. the non-singular. It follows the property - ${{A}^{-1}}A={{A}^{-1}}A=I$ where I is the identity matrix. By using elementary column transformation, you swap (interchanged) the columns and multiply the column with non-zero constant and add a multiple of one column to another column.
Complete step-by-step answer:
To find the inverse, first find the determinant of A
Determinant is an element that determines or identifies the nature or conditions of an outcome. It is denoted by det(A), det A or $\left| A \right|$
$\Rightarrow \left| A \right|=\left| \begin{matrix}
1 & 0 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right|$
The determinant of A is the product of the diagonal entries of the row echelon and the times of a factor $\pm 1$.
Now,
$\Rightarrow \left| A \right|=1[(2)(1)-(2)(3)]-0[(0)(1)-(1)(3)]+1[(0)(2)-(2)(1)]$
Simplify the left hand side of the equation –
Here, the middle term is equal to zero, as zero multiplied with anything becomes zero.
$\begin{align}
\Rightarrow & \left| A \right|=1[2-6]-0+1[-2] \\
& \left| A \right|=-4-2 \\
\end{align}$
Here, both the terms are negative so according to the property, minus and minus do plus and sign of minus.
$\begin{align}
\Rightarrow & \left| A \right|=-6 \\
\Rightarrow & \left| A \right|\ne 0 \\
\end{align}$
The determinant is not equal to zero, therefore, the inverse exists.
Now, consider ${{A}^{-1}}A=I$
Place, the values of the given matrix A in the above equation
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, subtract column one from column third ${{C}_{3}}-{{C}_{1}}$
We get,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
1 & 2 & 0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now interchange column second and third,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 3 & 2 \\
1 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, subtract column third from second –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & -2 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, multiply column second with two and subtract it from column third –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 2 \\
0 & -1 & 3 \\
0 & 1 & -2 \\
\end{matrix} \right]$
Divide column third by six, $(\dfrac{{{C}_{3}}}{6})$
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & \dfrac{1}{3} \\
0 & -1 & \dfrac{1}{2} \\
0 & 1 & \dfrac{1}{-3} \\
\end{matrix} \right]$
Now, use ${{C}_{1}}-{{C}_{3}}\text{ and }{{\text{C}}_{2}}+2{{C}_{3}}$ operations –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{2}{3} & \dfrac{-1}{3} & \dfrac{1}{3} \\
\dfrac{-1}{2} & 0 & \dfrac{1}{2} \\
\dfrac{1}{3} & \dfrac{1}{3} & \dfrac{-1}{3} \\
\end{matrix} \right]$
Now, take $\dfrac{1}{6}$ common from the right hand side of the equation –
${{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix}
4 & -2 & 2 \\
-3 & 0 & 3 \\
2 & 2 & -2 \\
\end{matrix} \right]$
This is the required solution.
Note: Always read the given instructions twice, as the inverse of any matrix can be calculated by the row and column transformation. Also it can be calculated by the adjoint method. So, apply accordingly.
Complete step-by-step answer:
To find the inverse, first find the determinant of A
Determinant is an element that determines or identifies the nature or conditions of an outcome. It is denoted by det(A), det A or $\left| A \right|$
$\Rightarrow \left| A \right|=\left| \begin{matrix}
1 & 0 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right|$
The determinant of A is the product of the diagonal entries of the row echelon and the times of a factor $\pm 1$.
Now,
$\Rightarrow \left| A \right|=1[(2)(1)-(2)(3)]-0[(0)(1)-(1)(3)]+1[(0)(2)-(2)(1)]$
Simplify the left hand side of the equation –
Here, the middle term is equal to zero, as zero multiplied with anything becomes zero.
$\begin{align}
\Rightarrow & \left| A \right|=1[2-6]-0+1[-2] \\
& \left| A \right|=-4-2 \\
\end{align}$
Here, both the terms are negative so according to the property, minus and minus do plus and sign of minus.
$\begin{align}
\Rightarrow & \left| A \right|=-6 \\
\Rightarrow & \left| A \right|\ne 0 \\
\end{align}$
The determinant is not equal to zero, therefore, the inverse exists.
Now, consider ${{A}^{-1}}A=I$
Place, the values of the given matrix A in the above equation
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, subtract column one from column third ${{C}_{3}}-{{C}_{1}}$
We get,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
1 & 2 & 0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now interchange column second and third,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 3 & 2 \\
1 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, subtract column third from second –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & -2 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, multiply column second with two and subtract it from column third –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 2 \\
0 & -1 & 3 \\
0 & 1 & -2 \\
\end{matrix} \right]$
Divide column third by six, $(\dfrac{{{C}_{3}}}{6})$
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & \dfrac{1}{3} \\
0 & -1 & \dfrac{1}{2} \\
0 & 1 & \dfrac{1}{-3} \\
\end{matrix} \right]$
Now, use ${{C}_{1}}-{{C}_{3}}\text{ and }{{\text{C}}_{2}}+2{{C}_{3}}$ operations –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{2}{3} & \dfrac{-1}{3} & \dfrac{1}{3} \\
\dfrac{-1}{2} & 0 & \dfrac{1}{2} \\
\dfrac{1}{3} & \dfrac{1}{3} & \dfrac{-1}{3} \\
\end{matrix} \right]$
Now, take $\dfrac{1}{6}$ common from the right hand side of the equation –
${{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix}
4 & -2 & 2 \\
-3 & 0 & 3 \\
2 & 2 & -2 \\
\end{matrix} \right]$
This is the required solution.
Note: Always read the given instructions twice, as the inverse of any matrix can be calculated by the row and column transformation. Also it can be calculated by the adjoint method. So, apply accordingly.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE