Answer
Verified
424.2k+ views
Hint: Integrating a function needs to solve the equation according to the basic formulae used in integration. The general formulae for integration for any variable and integrating with respect to that variable says that the power of the variable will increase by one and the final power on the variable will be multiplied in the denominator in the result obtained.
Formulae Used:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}}
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \]
\[ \Rightarrow \]\[\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x + a}}|} \]
Complete step by step solution:
The given question is \[\int {\dfrac{{dx}}{{{x^4} + 1}}} \]
Here we have to multiply and divide by some variable and some constant numbers and then modify the equation to move further and then after using standard formulae we can get our final integral, on solving we get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{x^4} + 1}}} \\
\Rightarrow \smallint \dfrac{1}{{1 + {x^4}}}{\text{ }}dx \\
\Rightarrow \int {\dfrac{{\dfrac{1}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\dfrac{2}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right) - \left( {1 -
\dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} - \dfrac{1}{2}\int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} dx \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} +
\dfrac{1}{{{x^2}}} - 2 + 2}}} - \dfrac{1}{2}\int
\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} + \dfrac{1}{{{x^2}}} - 2 + 2}} \\
\\
\\
\]
\[
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + 2}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}}
\right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2}}} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 +
\dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x - \dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
\\
u\sin g\,s\tan dard\,formulae\,:\,\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left(
{\dfrac{x}{a}} \right)\,and\,} \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x +
a}}|} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x -
\dfrac{1}{x}}}{{\sqrt 2 }}} \right) - \dfrac{1}{2} \times \dfrac{1}{{2\sqrt 2 }}\ln |\dfrac{{x + \dfrac{1}{x}
- \sqrt 2 }}{{x + \dfrac{1}{x} + \sqrt 2 }}| + C \\
\Rightarrow \dfrac{1}{{2\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x\sqrt 2 }}} \right) -
\dfrac{1}{{4\sqrt 2 }}\ln |\dfrac{{x - x\sqrt 2 + 1}}{{x + x\sqrt 2 + 1}}| + C \\
\]
This is our final required integral we are seeking for.
Additional Information:
In the above question we have multiplied and divided certain variables and constants in the equation, and these variables and constants need to be divided for moving further, if you practice more and more then only you will get to how to adjust the equation as per our need.
Note: Finding integral of a function becomes little hard when the question need any specific formulae to go through, in this question also you have to do the steps same as they are done otherwise you will get to the result, integration is all about remembering the process for a particular kind of question, and you have to solve the question as per the question needs.
Formulae Used:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}}
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \]
\[ \Rightarrow \]\[\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x + a}}|} \]
Complete step by step solution:
The given question is \[\int {\dfrac{{dx}}{{{x^4} + 1}}} \]
Here we have to multiply and divide by some variable and some constant numbers and then modify the equation to move further and then after using standard formulae we can get our final integral, on solving we get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{x^4} + 1}}} \\
\Rightarrow \smallint \dfrac{1}{{1 + {x^4}}}{\text{ }}dx \\
\Rightarrow \int {\dfrac{{\dfrac{1}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\dfrac{2}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right) - \left( {1 -
\dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} - \dfrac{1}{2}\int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} dx \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} +
\dfrac{1}{{{x^2}}} - 2 + 2}}} - \dfrac{1}{2}\int
\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} + \dfrac{1}{{{x^2}}} - 2 + 2}} \\
\\
\\
\]
\[
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + 2}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}}
\right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2}}} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 +
\dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x - \dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
\\
u\sin g\,s\tan dard\,formulae\,:\,\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left(
{\dfrac{x}{a}} \right)\,and\,} \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x +
a}}|} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x -
\dfrac{1}{x}}}{{\sqrt 2 }}} \right) - \dfrac{1}{2} \times \dfrac{1}{{2\sqrt 2 }}\ln |\dfrac{{x + \dfrac{1}{x}
- \sqrt 2 }}{{x + \dfrac{1}{x} + \sqrt 2 }}| + C \\
\Rightarrow \dfrac{1}{{2\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x\sqrt 2 }}} \right) -
\dfrac{1}{{4\sqrt 2 }}\ln |\dfrac{{x - x\sqrt 2 + 1}}{{x + x\sqrt 2 + 1}}| + C \\
\]
This is our final required integral we are seeking for.
Additional Information:
In the above question we have multiplied and divided certain variables and constants in the equation, and these variables and constants need to be divided for moving further, if you practice more and more then only you will get to how to adjust the equation as per our need.
Note: Finding integral of a function becomes little hard when the question need any specific formulae to go through, in this question also you have to do the steps same as they are done otherwise you will get to the result, integration is all about remembering the process for a particular kind of question, and you have to solve the question as per the question needs.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths