
How do you find the horizontal intercept of the equation $y = - 4{x^2} - 8x + 12$ algebraically?
Answer
540k+ views
Hint: We have been given to find the horizontal intercept. Horizontal intercept is the $x - axis$. Put the value of $y = 0$ in the given equation. Then, we will get the equation in the terms of $x$ - intercept and solve it by splitting the middle term.
Complete step by step solution:
From the question, we know that we have to find the horizontal intercept of the equation $y = - 4{x^2} - 8x + 12$ by the method of algebra. We know that the horizontal intercept is the intercept of the $x - axis$ whereas the vertical intercept is the $y - axis$. So, we have to find the equation which gives us the value of $x$.
Every point on the $x - axis$ has the form of $\left( {x,0} \right)$ , while every point on the graph has the form $\left( {x,f\left( x \right)} \right)$, as $f\left( x \right) = y$, so, to find the $x$ intercept we have to put the value of $y = 0$.
Therefore, putting $y = 0$ in the above equation, we get –
$
\Rightarrow 0 = - 4{x^2} - 8x + 12 \\
\Rightarrow 4{x^2} + 8x - 12 = 0 \\
$
Now, taking 4 as common from the above equation to make the equation more simplified –
$ \Rightarrow {x^2} + 2x - 3 = 0 \cdots \left( 1 \right)$
Now, we have three parts –
The first term, ${x^2}$, has the coefficient as 1.
The middle term, $2x$, has the coefficient as 2.
The last term, $ - 3$, has the coefficient as -3.
Multiply the coefficient of the first term which is 1 with the last term or constant which is -3 –
$ \Rightarrow 1 \times \left( { - 3} \right) = - 3$
Now, the factors of -3 are -1 and 3 which when multiplied gives the result as -3 and sum as 2 –
$ \Rightarrow - 1 + 3 = 2$
Putting these values in the equation (1), we get –
$ \Rightarrow {x^2} + 3x - x - 3 = 0$
Taking like terms from the first two-term and taking common factor from the last two terms –
$ \Rightarrow x\left( {x + 3} \right) - 1\left( {x + 3} \right) = 0$
Now, $\left( {x + 3} \right)$ is common in the above equation –
$ \Rightarrow \left( {x + 3} \right)\left( {x - 1} \right) = 0$
When $\left( {x + 3} \right) = 0$ then, $x = - 3$
When $\left( {x - 1} \right) = 0$ then, $x = 1$
Hence, the horizontal intercepts of the equation are $\left( { - 3,0} \right)$ and $\left( {1,0} \right)$.
Note:
We can also find the horizontal intercepts by finding the discriminant and then nature of roots. Then, use the quadratic formula for the equation ${x^2} + 2x - 3 = 0$ and find the values of $x$ by using the formula –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
where, $a$ is the coefficient of the first term, $b$ is the coefficient of the middle term and $c$ is the constant term.
Complete step by step solution:
From the question, we know that we have to find the horizontal intercept of the equation $y = - 4{x^2} - 8x + 12$ by the method of algebra. We know that the horizontal intercept is the intercept of the $x - axis$ whereas the vertical intercept is the $y - axis$. So, we have to find the equation which gives us the value of $x$.
Every point on the $x - axis$ has the form of $\left( {x,0} \right)$ , while every point on the graph has the form $\left( {x,f\left( x \right)} \right)$, as $f\left( x \right) = y$, so, to find the $x$ intercept we have to put the value of $y = 0$.
Therefore, putting $y = 0$ in the above equation, we get –
$
\Rightarrow 0 = - 4{x^2} - 8x + 12 \\
\Rightarrow 4{x^2} + 8x - 12 = 0 \\
$
Now, taking 4 as common from the above equation to make the equation more simplified –
$ \Rightarrow {x^2} + 2x - 3 = 0 \cdots \left( 1 \right)$
Now, we have three parts –
The first term, ${x^2}$, has the coefficient as 1.
The middle term, $2x$, has the coefficient as 2.
The last term, $ - 3$, has the coefficient as -3.
Multiply the coefficient of the first term which is 1 with the last term or constant which is -3 –
$ \Rightarrow 1 \times \left( { - 3} \right) = - 3$
Now, the factors of -3 are -1 and 3 which when multiplied gives the result as -3 and sum as 2 –
$ \Rightarrow - 1 + 3 = 2$
Putting these values in the equation (1), we get –
$ \Rightarrow {x^2} + 3x - x - 3 = 0$
Taking like terms from the first two-term and taking common factor from the last two terms –
$ \Rightarrow x\left( {x + 3} \right) - 1\left( {x + 3} \right) = 0$
Now, $\left( {x + 3} \right)$ is common in the above equation –
$ \Rightarrow \left( {x + 3} \right)\left( {x - 1} \right) = 0$
When $\left( {x + 3} \right) = 0$ then, $x = - 3$
When $\left( {x - 1} \right) = 0$ then, $x = 1$
Hence, the horizontal intercepts of the equation are $\left( { - 3,0} \right)$ and $\left( {1,0} \right)$.
Note:
We can also find the horizontal intercepts by finding the discriminant and then nature of roots. Then, use the quadratic formula for the equation ${x^2} + 2x - 3 = 0$ and find the values of $x$ by using the formula –
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
where, $a$ is the coefficient of the first term, $b$ is the coefficient of the middle term and $c$ is the constant term.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

