Answer
Verified
410.1k+ views
Hint:In order to find the solution to this question , we need to first understand the mathematical concept of the geometric sequence . A Geometric sequence somewhere also called a geometric progression .
It is actually a sequence formed of non – zero numbers such that there in the sequence
Each term subsequent to the first term goes to the next by always multiplying by the same , fixed non – zero number called the common ratio and denoted by ‘ r ‘ . If there are n terms in the sequence then the first term is always denoted by ‘ ${a_1}$ ’ .
Complete Step by step solution :
According to the given question , our first term is ${a_1} = 4$. Also the common ratio as described in the hint part can be calculated by dividing any number or term from the sequence by the term preceding it .
Now The first term is ${a_1} = 4$ and another given term is 324 positioned at fifth place that can be expressed as the term in $a{r^4}$ . So , $a{r^4} = 324$. We can also determine the position of the term by keeping in mind that $a$is the first term , $ar$is the second term , $a{r^2}$is the third term and so on .
So , the common ratio , ‘ r ‘ can be calculated as –
$\dfrac{{a{r^4}}}{a}$= $\dfrac{{324}}{4}$
So here , ${r^4} = 81$
We can easily see that 81 comes when 3 is multiplied four times that is ${3^4} = 81$, comparing this with
${r^4} = 81$ , we get the common ratio , ${r^{}} = \pm 3$ .
So , the common ratio can be 3 and -3 .
Accordingly we will make the geometric sequence using the common ratio as 3 and as well as -3 .
Hence , the geometric sequence generated is \[\{ 4,12,36,108,324\} \]o r \[\{ 4, - 12, - 36, - 108, -
324\} \].
So, the middle terms are \[\{ 12,36,108\} \]or \[\{ - 12, - 36, - 108\} \].
Note : If the same number is not multiplied to each number in the series, then there is no common ratio.
Alternatively , to find the nth term of the sequence is determined by the formula = ${a_n} = a{r^{n -
1}}$.
If the common ratio is determined to be a complex number then also geometric series is said to be valid .
It is actually a sequence formed of non – zero numbers such that there in the sequence
Each term subsequent to the first term goes to the next by always multiplying by the same , fixed non – zero number called the common ratio and denoted by ‘ r ‘ . If there are n terms in the sequence then the first term is always denoted by ‘ ${a_1}$ ’ .
Complete Step by step solution :
According to the given question , our first term is ${a_1} = 4$. Also the common ratio as described in the hint part can be calculated by dividing any number or term from the sequence by the term preceding it .
Now The first term is ${a_1} = 4$ and another given term is 324 positioned at fifth place that can be expressed as the term in $a{r^4}$ . So , $a{r^4} = 324$. We can also determine the position of the term by keeping in mind that $a$is the first term , $ar$is the second term , $a{r^2}$is the third term and so on .
So , the common ratio , ‘ r ‘ can be calculated as –
$\dfrac{{a{r^4}}}{a}$= $\dfrac{{324}}{4}$
So here , ${r^4} = 81$
We can easily see that 81 comes when 3 is multiplied four times that is ${3^4} = 81$, comparing this with
${r^4} = 81$ , we get the common ratio , ${r^{}} = \pm 3$ .
So , the common ratio can be 3 and -3 .
Accordingly we will make the geometric sequence using the common ratio as 3 and as well as -3 .
Hence , the geometric sequence generated is \[\{ 4,12,36,108,324\} \]o r \[\{ 4, - 12, - 36, - 108, -
324\} \].
So, the middle terms are \[\{ 12,36,108\} \]or \[\{ - 12, - 36, - 108\} \].
Note : If the same number is not multiplied to each number in the series, then there is no common ratio.
Alternatively , to find the nth term of the sequence is determined by the formula = ${a_n} = a{r^{n -
1}}$.
If the common ratio is determined to be a complex number then also geometric series is said to be valid .
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE