
Find the generating function of the given series $3+5x+9{{x}^{2}}+15{{x}^{3}}+23{{x}^{4}}+33{{x}^{5}}+...........$
Answer
591.6k+ views
Hint: First consider the sequence as S then multiply it by x both S and its sequence then subtract it from S to get the form S (1-x). After that take out the function from S and take it as P then repeat the same process and get the function of P (1-x) and then take it as Q, again use the same process and find Q (1-x). Then find the function of Q in terms of x and from that get the function of P and finally S.
Complete step-by-step answer:
Infinite power series is simply a series with infinite number of terms in it, it is of the form of ${{c}_{n}}{{x}^{n}}$ where ${{c}_{n}}$ is some constant. So we might write a power series like this
$\sum\limits_{k=0}^{\infty }{{{c}_{k}}{{x}^{k}}}$
Or expand like this,
${{c}_{0}}+{{c}_{1}}x+{{c}_{2}}{{x}^{2}}+{{c}_{3}}{{x}^{2}}+{{c}_{4}}{{x}^{4}}............$
When viewed in the context of generating functions, we call such power series as generating series. The generating series generates the sequence of coefficients of the infinite polynomial.
Let the sequence $3+5x+9{{x}^{2}}+15{{x}^{3}}+23{{x}^{4}}+33{{x}^{5}}+...........$ be considered as ‘S’ so we can write ‘S’ as,
$S=3+5x+9{{x}^{2}}+15{{x}^{3}}+23{{x}^{4}}+33{{x}^{5}}+...........$
Now multiplying ‘x’ on both sides and then subtracting the new series from the former series,
$xS=3x+5{{x}^{2}}+9{{x}^{3}}+15{{x}^{4}}+.............$
Now on subtracting the above series with ‘S’, we get
$S\left( 1-x \right)=3+2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}.........-----(i)$
Let’s take the function $2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+.........$ as P. Then we can write as,
$P=2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+.........--(ii)$
Now, multiplying ‘x’ on both side and then subtracting the new series from the former series, we get
$\begin{align}
& P=2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+......... \\
& xP=2{{x}^{2}}+4{{x}^{3}}+6{{x}^{4}}+........ \\
\end{align}$
Now on subtracting we get,
$P\left( 1-x \right)=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}..........---(iii)$
Now let’s take $2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}..........$ as Q. Then we can write it as,
$Q=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}.........----(iv)$
Now multiplying by x on both sides and then subtracting the new series from the former series.
$\begin{align}
& Q=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}........... \\
& xQ=2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}............ \\
\end{align}$
Now, on subtracting we get,
$\begin{align}
& Q\left( 1-x \right)=2x \\
& \Rightarrow Q=\dfrac{2x}{1-x} \\
\end{align}$
Now from equation (iii) and (iv), we see that P (1-x) = Q, substituting the value of ‘Q’, we get
$\begin{align}
& P\left( 1-x \right)=\dfrac{2x}{1-x} \\
& \Rightarrow P=\dfrac{2x}{{{\left( 1-x \right)}^{2}}}..........(v) \\
\end{align}$
Similarly, from equation (i) and (ii), we see that
S (1-x) = 3+P
Substituting the value of ‘P’ from equation (v), we get
$\begin{align}
& S\left( 1-x \right)=3+\dfrac{2x}{{{\left( 1-x \right)}^{2}}} \\
& \Rightarrow S=\dfrac{3}{1-x}+\dfrac{2x}{{{\left( 1-x \right)}^{3}}} \\
\end{align}$
So, the required generating function is $\dfrac{3}{1-x}+\dfrac{2x}{{{\left( 1-x \right)}^{3}}}$
Note: After getting the function of sequence of Q as $2x+2{{x}^{2}}+2{{x}^{3}}+.........$ we can do find the function another way by just using the formula of infinite sum which is $\dfrac{a}{1-r}$ where a is the first term and r is the common ratio.
Complete step-by-step answer:
Infinite power series is simply a series with infinite number of terms in it, it is of the form of ${{c}_{n}}{{x}^{n}}$ where ${{c}_{n}}$ is some constant. So we might write a power series like this
$\sum\limits_{k=0}^{\infty }{{{c}_{k}}{{x}^{k}}}$
Or expand like this,
${{c}_{0}}+{{c}_{1}}x+{{c}_{2}}{{x}^{2}}+{{c}_{3}}{{x}^{2}}+{{c}_{4}}{{x}^{4}}............$
When viewed in the context of generating functions, we call such power series as generating series. The generating series generates the sequence of coefficients of the infinite polynomial.
Let the sequence $3+5x+9{{x}^{2}}+15{{x}^{3}}+23{{x}^{4}}+33{{x}^{5}}+...........$ be considered as ‘S’ so we can write ‘S’ as,
$S=3+5x+9{{x}^{2}}+15{{x}^{3}}+23{{x}^{4}}+33{{x}^{5}}+...........$
Now multiplying ‘x’ on both sides and then subtracting the new series from the former series,
$xS=3x+5{{x}^{2}}+9{{x}^{3}}+15{{x}^{4}}+.............$
Now on subtracting the above series with ‘S’, we get
$S\left( 1-x \right)=3+2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}.........-----(i)$
Let’s take the function $2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+.........$ as P. Then we can write as,
$P=2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+.........--(ii)$
Now, multiplying ‘x’ on both side and then subtracting the new series from the former series, we get
$\begin{align}
& P=2x+4{{x}^{2}}+6{{x}^{3}}+8{{x}^{4}}+......... \\
& xP=2{{x}^{2}}+4{{x}^{3}}+6{{x}^{4}}+........ \\
\end{align}$
Now on subtracting we get,
$P\left( 1-x \right)=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}..........---(iii)$
Now let’s take $2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}..........$ as Q. Then we can write it as,
$Q=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}.........----(iv)$
Now multiplying by x on both sides and then subtracting the new series from the former series.
$\begin{align}
& Q=2x+2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}........... \\
& xQ=2{{x}^{2}}+2{{x}^{3}}+2{{x}^{4}}............ \\
\end{align}$
Now, on subtracting we get,
$\begin{align}
& Q\left( 1-x \right)=2x \\
& \Rightarrow Q=\dfrac{2x}{1-x} \\
\end{align}$
Now from equation (iii) and (iv), we see that P (1-x) = Q, substituting the value of ‘Q’, we get
$\begin{align}
& P\left( 1-x \right)=\dfrac{2x}{1-x} \\
& \Rightarrow P=\dfrac{2x}{{{\left( 1-x \right)}^{2}}}..........(v) \\
\end{align}$
Similarly, from equation (i) and (ii), we see that
S (1-x) = 3+P
Substituting the value of ‘P’ from equation (v), we get
$\begin{align}
& S\left( 1-x \right)=3+\dfrac{2x}{{{\left( 1-x \right)}^{2}}} \\
& \Rightarrow S=\dfrac{3}{1-x}+\dfrac{2x}{{{\left( 1-x \right)}^{3}}} \\
\end{align}$
So, the required generating function is $\dfrac{3}{1-x}+\dfrac{2x}{{{\left( 1-x \right)}^{3}}}$
Note: After getting the function of sequence of Q as $2x+2{{x}^{2}}+2{{x}^{3}}+.........$ we can do find the function another way by just using the formula of infinite sum which is $\dfrac{a}{1-r}$ where a is the first term and r is the common ratio.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

