Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# Find the general solution of $sinx + sin3x + sin5x = 0$. Verified
363.9k+ views
Hint – Use the formula $\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)$.

We have ,
$sinx + sin3x + sin5x = 0 \\ (sinx + sin5x) + sin3x = 0 \\$
We know ,
$\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$
Therefore,
$sinx + sin5x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right) = 2\sin \left( {3x} \right)\cos \left( {2x} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)\,\,\,\,$ [From (1)]
$2\sin \left( {3x} \right)\cos \left( {2x} \right) + \sin 3x = 0\,\,\,\,\,\,\,$ [From (2)]
$sin3x(2cos2x + 1) = 0$
Either ${\text{ }}sin3x = 0\;$ or $2cos2x + 1 = 0$
i.e. $sin3x = 0\;\,\,\,\,{\text{or }}\;cos2x = \dfrac{{ - 1}}{2}$
$3x = n\pi ,\,\,\,n \in Z\;\,\,\,\,\,{\text{or}}\,\,\,\,\;2x = 2m\pi \pm \dfrac{{2\pi }}{3}\,\,\,\,\;{\text{where}}\;m \in Z$
Hence, $x = \dfrac{{n\pi }}{3}\;\,\,{\text{or}}\,\,\,\,\;x = m\pi \pm \dfrac{\pi }{3},{\text{ where\; }}n,m \in Z$.

Note – In these types of questions of finding general solutions, always try to simplify with the help of trigonometric formulas such that all terms on both sides are single or multiplied with each other . Then equate and then use quadrant rule in trigonometry to get the general solutions.
Last updated date: 18th Sep 2023
Total views: 363.9k
Views today: 7.63k