
Find the general solution of \[sinx + sin3x + sin5x = 0\].
Answer
618.6k+ views
Hint – Use the formula \[\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\].
We have ,
\[
sinx + sin3x + sin5x = 0 \\
(sinx + sin5x) + sin3x = 0 \\
\]
We know ,
\[\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)\]
Therefore,
\[sinx + sin5x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right) = 2\sin \left( {3x} \right)\cos \left( {2x} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)\,\,\,\,\] [From (1)]
\[2\sin \left( {3x} \right)\cos \left( {2x} \right) + \sin 3x = 0\,\,\,\,\,\,\,\] [From (2)]
\[sin3x(2cos2x + 1) = 0\]
Either \[{\text{ }}sin3x = 0\;\] or \[2cos2x + 1 = 0\]
i.e. \[sin3x = 0\;\,\,\,\,{\text{or }}\;cos2x = \dfrac{{ - 1}}{2}\]
\[3x = n\pi ,\,\,\,n \in Z\;\,\,\,\,\,{\text{or}}\,\,\,\,\;2x = 2m\pi \pm \dfrac{{2\pi }}{3}\,\,\,\,\;{\text{where}}\;m \in Z\]
Hence, \[x = \dfrac{{n\pi }}{3}\;\,\,{\text{or}}\,\,\,\,\;x = m\pi \pm \dfrac{\pi }{3},{\text{ where\; }}n,m \in Z\].
Note – In these types of questions of finding general solutions, always try to simplify with the help of trigonometric formulas such that all terms on both sides are single or multiplied with each other . Then equate and then use quadrant rule in trigonometry to get the general solutions.
We have ,
\[
sinx + sin3x + sin5x = 0 \\
(sinx + sin5x) + sin3x = 0 \\
\]
We know ,
\[\sin a + \sin b = 2\sin \left( {\dfrac{{a + b}}{2}} \right)\cos \left( {\dfrac{{a - b}}{2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)\]
Therefore,
\[sinx + sin5x = 2\sin \left( {\dfrac{{6x}}{2}} \right)\cos \left( {\dfrac{{4x}}{2}} \right) = 2\sin \left( {3x} \right)\cos \left( {2x} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,...(2)\,\,\,\,\] [From (1)]
\[2\sin \left( {3x} \right)\cos \left( {2x} \right) + \sin 3x = 0\,\,\,\,\,\,\,\] [From (2)]
\[sin3x(2cos2x + 1) = 0\]
Either \[{\text{ }}sin3x = 0\;\] or \[2cos2x + 1 = 0\]
i.e. \[sin3x = 0\;\,\,\,\,{\text{or }}\;cos2x = \dfrac{{ - 1}}{2}\]
\[3x = n\pi ,\,\,\,n \in Z\;\,\,\,\,\,{\text{or}}\,\,\,\,\;2x = 2m\pi \pm \dfrac{{2\pi }}{3}\,\,\,\,\;{\text{where}}\;m \in Z\]
Hence, \[x = \dfrac{{n\pi }}{3}\;\,\,{\text{or}}\,\,\,\,\;x = m\pi \pm \dfrac{\pi }{3},{\text{ where\; }}n,m \in Z\].
Note – In these types of questions of finding general solutions, always try to simplify with the help of trigonometric formulas such that all terms on both sides are single or multiplied with each other . Then equate and then use quadrant rule in trigonometry to get the general solutions.
Recently Updated Pages
Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

How can you explain that CCl4 has no dipole moment class 11 chemistry CBSE

Which will undergo SN2 reaction fastest among the following class 11 chemistry CBSE

The values of mass m for which the 100 kg block does class 11 physics CBSE

Why are voluntary muscles called striated muscles class 11 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

