Answer

Verified

416.4k+ views

**Hint:**We first express all the six trigonometric functions. We divide them in primary ratios and their inverse ratios. We also find all possible relations between those ratios. Then we take the angle values of ${{0}^{\circ }}$ for all the six trigonometric functions.

**Complete step by step solution:**

We first complete the list of all the six trigonometric functions.

The main three trigonometric ratio functions are $\sin \theta ,\cos \theta ,\tan \theta $. The inverse of these three functions is $\csc \theta ,\sec \theta ,\cot \theta $. Also, we can express $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$.

Therefore, the relations are $\csc \theta =\dfrac{1}{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta },\cot \theta =\dfrac{1}{\tan \theta }$.

We can also express these ratios with respect to a specific angle $\theta $ of a right-angle triangle and use the sides of that triangle to find the value of the ratio.

A right-angle triangle has three sides and they are base, height, hypotenuse. We express the ratios in $\sin \theta =\dfrac{\text{height}}{\text{hypotenuse}},\cos \theta =\dfrac{\text{base}}{\text{hypotenuse}},\tan \theta =\dfrac{\text{height}}{\text{base}}$.

Similarly, $\csc \theta =\dfrac{\text{hypotenuse}}{\text{height}},\sec \theta =\dfrac{\text{hypotenuse}}{\text{base}},\cot \theta =\dfrac{\text{base}}{\text{height}}$.

Now we express the values of these ratios for the conventional angles of ${{45}^{\circ }}$.

Ratios | angles (in degree) | values |

$\sin \theta $ | ${{45}^{\circ }}$ | $\dfrac{1}{\sqrt{2}}$ |

$\cos \theta $ | ${{45}^{\circ }}$ | $\dfrac{1}{\sqrt{2}}$ |

$\tan \theta $ | ${{45}^{\circ }}$ | 1 |

$\csc \theta $ | ${{45}^{\circ }}$ | $\sqrt{2}$ |

$\sec \theta $ | ${{45}^{\circ }}$ | $\sqrt{2}$ |

$\cot \theta $ | ${{45}^{\circ }}$ | 1 |

**Note:**We need to remember that in mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which places in India experience sunrise first and class 9 social science CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE