Answer
Verified
491.7k+ views
Hint: In order to solve these type of question, we have to simply find out the slopes $m$ between two points i.e. $AB,AC,BC$ using formula $m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$ and then convert them into slopes of the altitudes $AD,BE,CF$ by using ${m_{AD}} = - \dfrac{1}{{{m_{BC}}}}$ , ${m_{BE}} = - \dfrac{1}{{{m_{AC}}}}$ , ${m_{CF}} = - \dfrac{1}{{{m_{AB}}}}$ after that substitute the value of ${m_{AD}},{m_{BE}},{m_{CF}}$ in equation for altitude between two points $y - {y_1} = m\left( {x - {x_1}} \right)$ .
Complete step-by-step answer:
Given points are,
$A\left( {2, - 2} \right),B\left( {1{\text{ }},1} \right),C\left( { - 1,0} \right)$
Now we can find the slope of $A\left( {2, - 2} \right),B\left( {1,1} \right)$ by using the formula,
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
${m_{AB}} = {\text{ }}\dfrac{{1 - \left( { - 2} \right)}}{{1 - 2}}$
Or ${m_{AB}} = - 3$
Therefore, using ${m_{CF}} = - \dfrac{1}{{{m_{AB}}}}$
${m_{CF}} = {\text{ }}\dfrac{1}{3}$
Using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - 0 = \dfrac{1}{3}\left( {x - \left( { - 1} \right)} \right)$
Or $3y = x + 1$
Or $x - 3y + 1 = 0 - - - - - - \left( 1 \right)$
Similarly Slope of $B\left( {1{\text{ }},1} \right),C\left( { - 1,0} \right)$ is
${m_{BC}} = \dfrac{{0 - 1}}{{ - 1 - 1}}$
${m_{BC}} = \dfrac{1}{2}$
Therefore, using ${m_{AD}} = - \dfrac{1}{{{m_{BC}}}}$
${m_{AD}} = - 2$
Using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - \left( { - 2} \right) = \left( { - 2} \right)\left( {x - 2} \right)$
Or $y + 2 = - 2x + 4$
Or $y + 2x - 2 = 0 - - - - \left( 2 \right)$
Slope of $A\left( {2, - 2} \right),C\left( { - 1,0} \right)$
${m_{AC}} = \dfrac{{0 - \left( { - 2} \right)}}{{ - 1 - 2}}$
Or ${m_{AC}} = - \dfrac{2}{3}$
Therefore, using ${m_{BE}} = - \dfrac{1}{{{m_{AC}}}}$
${m_{BE}} = \dfrac{3}{2}$
Now, using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - 1 = \dfrac{3}{2}\left( {x - 1} \right)$
Or $\left( {y - 1} \right)2 = 3x - 3$
Or $2y - 2 - 3x - 3 = 0$
Or $2y - 3x + 1 = 0 - - - - - \left( 3 \right)$
Therefore, $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ are the equations of CF , AD , and BE which are altitudes of the given triangle.
Note: Whenever we face these type of question the key concept is that firstly we have to find out the slopes of $AB,AC,BC$ and the convert them into the slopes of altitudes $AD,BE,CF$ and then put them in the equation of altitudes between two points and we will easily get our desired equations.
Complete step-by-step answer:
Given points are,
$A\left( {2, - 2} \right),B\left( {1{\text{ }},1} \right),C\left( { - 1,0} \right)$
Now we can find the slope of $A\left( {2, - 2} \right),B\left( {1,1} \right)$ by using the formula,
$m = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$
${m_{AB}} = {\text{ }}\dfrac{{1 - \left( { - 2} \right)}}{{1 - 2}}$
Or ${m_{AB}} = - 3$
Therefore, using ${m_{CF}} = - \dfrac{1}{{{m_{AB}}}}$
${m_{CF}} = {\text{ }}\dfrac{1}{3}$
Using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - 0 = \dfrac{1}{3}\left( {x - \left( { - 1} \right)} \right)$
Or $3y = x + 1$
Or $x - 3y + 1 = 0 - - - - - - \left( 1 \right)$
Similarly Slope of $B\left( {1{\text{ }},1} \right),C\left( { - 1,0} \right)$ is
${m_{BC}} = \dfrac{{0 - 1}}{{ - 1 - 1}}$
${m_{BC}} = \dfrac{1}{2}$
Therefore, using ${m_{AD}} = - \dfrac{1}{{{m_{BC}}}}$
${m_{AD}} = - 2$
Using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - \left( { - 2} \right) = \left( { - 2} \right)\left( {x - 2} \right)$
Or $y + 2 = - 2x + 4$
Or $y + 2x - 2 = 0 - - - - \left( 2 \right)$
Slope of $A\left( {2, - 2} \right),C\left( { - 1,0} \right)$
${m_{AC}} = \dfrac{{0 - \left( { - 2} \right)}}{{ - 1 - 2}}$
Or ${m_{AC}} = - \dfrac{2}{3}$
Therefore, using ${m_{BE}} = - \dfrac{1}{{{m_{AC}}}}$
${m_{BE}} = \dfrac{3}{2}$
Now, using $y - {y_1} = m\left( {x - {x_1}} \right)$
$y - 1 = \dfrac{3}{2}\left( {x - 1} \right)$
Or $\left( {y - 1} \right)2 = 3x - 3$
Or $2y - 2 - 3x - 3 = 0$
Or $2y - 3x + 1 = 0 - - - - - \left( 3 \right)$
Therefore, $\left( 1 \right),\left( 2 \right),\left( 3 \right)$ are the equations of CF , AD , and BE which are altitudes of the given triangle.
Note: Whenever we face these type of question the key concept is that firstly we have to find out the slopes of $AB,AC,BC$ and the convert them into the slopes of altitudes $AD,BE,CF$ and then put them in the equation of altitudes between two points and we will easily get our desired equations.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths