Answer
Verified
492.3k+ views
Hint: Solve by finding the slope of the line. Then, use the formula for the equation of line passing through the point and having a given slope to find its equation. Solve by finding the slope of the line. Then, use the formula for the equation of line passing through the point and having a given slope to find its equation. The equation of a point that passes through a point (a, b) and has a slope m is given as $y-b = m(x-a)$.
Complete step-by-step answer:
We know that the slope of a line is the tangent of the angle that it makes with the positive direction of x-axis.
If m is the slope of the line and \[\theta \] is the angle made with the positive direction of x-axis, then we have the relation as follows:
\[m = \tan \theta ............(1)\]
It is given that the line makes an angle 60° with the positive direction of the y-axis. We know that the angle between positive direction of y-axis and positive direction of x-axis is 90°, then the angle made by the line with the positive direction of the x-axis is 90° minus the angle made with the positive direction of y-axis.
\[\theta = 90^\circ - 60^\circ \]
\[\theta = 30^\circ .............(2)\]
Now using equation (2) in equation (1), we get:
$\Rightarrow$ \[m = \tan 30^\circ \]
$\Rightarrow$ \[m = \dfrac{1}{{\sqrt 3 }}...........(3)\]
It is given that the line passes through the point (3, -2) and we found the value of slope to be \[\dfrac{1}{{\sqrt 3 }}\].
The equation of a point that passes through a point (a, b) and has a slope m is given as follows:
\[y - b = m(x - a)\]
Substituting the values in the above equation, we have:
$\Rightarrow$ \[y - ( - 2) = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
$\Rightarrow$ \[y + 2 = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
Taking \[\sqrt 3 \] to the other side, we have:
$\Rightarrow$ \[\sqrt 3 (y + 2) = x - 3\]
Simplifying the equation, we obtain:
$\Rightarrow$ \[x - \sqrt 3 y - 2\sqrt 3 - 3 = 0\]
$\Rightarrow$ \[x = \sqrt 3 y + 2\sqrt 3 + 3\]
Hence, the required equation is \[x = \sqrt 3 y + 2\sqrt 3 + 3\].
Note: Do not use the given angle to calculate the tangent to find the slope directly, first, you need to find the angle made by the line with the positive direction of x-axis, then proceed with the solution.
Complete step-by-step answer:
We know that the slope of a line is the tangent of the angle that it makes with the positive direction of x-axis.
If m is the slope of the line and \[\theta \] is the angle made with the positive direction of x-axis, then we have the relation as follows:
\[m = \tan \theta ............(1)\]
It is given that the line makes an angle 60° with the positive direction of the y-axis. We know that the angle between positive direction of y-axis and positive direction of x-axis is 90°, then the angle made by the line with the positive direction of the x-axis is 90° minus the angle made with the positive direction of y-axis.
\[\theta = 90^\circ - 60^\circ \]
\[\theta = 30^\circ .............(2)\]
Now using equation (2) in equation (1), we get:
$\Rightarrow$ \[m = \tan 30^\circ \]
$\Rightarrow$ \[m = \dfrac{1}{{\sqrt 3 }}...........(3)\]
It is given that the line passes through the point (3, -2) and we found the value of slope to be \[\dfrac{1}{{\sqrt 3 }}\].
The equation of a point that passes through a point (a, b) and has a slope m is given as follows:
\[y - b = m(x - a)\]
Substituting the values in the above equation, we have:
$\Rightarrow$ \[y - ( - 2) = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
$\Rightarrow$ \[y + 2 = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
Taking \[\sqrt 3 \] to the other side, we have:
$\Rightarrow$ \[\sqrt 3 (y + 2) = x - 3\]
Simplifying the equation, we obtain:
$\Rightarrow$ \[x - \sqrt 3 y - 2\sqrt 3 - 3 = 0\]
$\Rightarrow$ \[x = \sqrt 3 y + 2\sqrt 3 + 3\]
Hence, the required equation is \[x = \sqrt 3 y + 2\sqrt 3 + 3\].
Note: Do not use the given angle to calculate the tangent to find the slope directly, first, you need to find the angle made by the line with the positive direction of x-axis, then proceed with the solution.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE