
Find the equation of the straight line passing through (3, -2) and making an angle of 60° with the positive direction of y-axis.
Answer
620.1k+ views
Hint: Solve by finding the slope of the line. Then, use the formula for the equation of line passing through the point and having a given slope to find its equation. Solve by finding the slope of the line. Then, use the formula for the equation of line passing through the point and having a given slope to find its equation. The equation of a point that passes through a point (a, b) and has a slope m is given as $y-b = m(x-a)$.
Complete step-by-step answer:
We know that the slope of a line is the tangent of the angle that it makes with the positive direction of x-axis.
If m is the slope of the line and \[\theta \] is the angle made with the positive direction of x-axis, then we have the relation as follows:
\[m = \tan \theta ............(1)\]
It is given that the line makes an angle 60° with the positive direction of the y-axis. We know that the angle between positive direction of y-axis and positive direction of x-axis is 90°, then the angle made by the line with the positive direction of the x-axis is 90° minus the angle made with the positive direction of y-axis.
\[\theta = 90^\circ - 60^\circ \]
\[\theta = 30^\circ .............(2)\]
Now using equation (2) in equation (1), we get:
$\Rightarrow$ \[m = \tan 30^\circ \]
$\Rightarrow$ \[m = \dfrac{1}{{\sqrt 3 }}...........(3)\]
It is given that the line passes through the point (3, -2) and we found the value of slope to be \[\dfrac{1}{{\sqrt 3 }}\].
The equation of a point that passes through a point (a, b) and has a slope m is given as follows:
\[y - b = m(x - a)\]
Substituting the values in the above equation, we have:
$\Rightarrow$ \[y - ( - 2) = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
$\Rightarrow$ \[y + 2 = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
Taking \[\sqrt 3 \] to the other side, we have:
$\Rightarrow$ \[\sqrt 3 (y + 2) = x - 3\]
Simplifying the equation, we obtain:
$\Rightarrow$ \[x - \sqrt 3 y - 2\sqrt 3 - 3 = 0\]
$\Rightarrow$ \[x = \sqrt 3 y + 2\sqrt 3 + 3\]
Hence, the required equation is \[x = \sqrt 3 y + 2\sqrt 3 + 3\].
Note: Do not use the given angle to calculate the tangent to find the slope directly, first, you need to find the angle made by the line with the positive direction of x-axis, then proceed with the solution.
Complete step-by-step answer:
We know that the slope of a line is the tangent of the angle that it makes with the positive direction of x-axis.
If m is the slope of the line and \[\theta \] is the angle made with the positive direction of x-axis, then we have the relation as follows:
\[m = \tan \theta ............(1)\]
It is given that the line makes an angle 60° with the positive direction of the y-axis. We know that the angle between positive direction of y-axis and positive direction of x-axis is 90°, then the angle made by the line with the positive direction of the x-axis is 90° minus the angle made with the positive direction of y-axis.
\[\theta = 90^\circ - 60^\circ \]
\[\theta = 30^\circ .............(2)\]
Now using equation (2) in equation (1), we get:
$\Rightarrow$ \[m = \tan 30^\circ \]
$\Rightarrow$ \[m = \dfrac{1}{{\sqrt 3 }}...........(3)\]
It is given that the line passes through the point (3, -2) and we found the value of slope to be \[\dfrac{1}{{\sqrt 3 }}\].
The equation of a point that passes through a point (a, b) and has a slope m is given as follows:
\[y - b = m(x - a)\]
Substituting the values in the above equation, we have:
$\Rightarrow$ \[y - ( - 2) = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
$\Rightarrow$ \[y + 2 = \dfrac{1}{{\sqrt 3 }}(x - 3)\]
Taking \[\sqrt 3 \] to the other side, we have:
$\Rightarrow$ \[\sqrt 3 (y + 2) = x - 3\]
Simplifying the equation, we obtain:
$\Rightarrow$ \[x - \sqrt 3 y - 2\sqrt 3 - 3 = 0\]
$\Rightarrow$ \[x = \sqrt 3 y + 2\sqrt 3 + 3\]
Hence, the required equation is \[x = \sqrt 3 y + 2\sqrt 3 + 3\].
Note: Do not use the given angle to calculate the tangent to find the slope directly, first, you need to find the angle made by the line with the positive direction of x-axis, then proceed with the solution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

