Answer
Verified
492k+ views
Hint: The general form of the parabola \[y=a{{x}^{2}}+bx+c\] is to be used while solving this question.
Complete step-by-step answer:
In the question, it is given that the axis of the parabola is parallel to the $y-$axis. So, the parabola would look like the figure below.
We know that the general formula for this form of parabola is given by,
\[y=a{{x}^{2}}+bx+c\ldots \ldots \ldots \left( i \right)\]
It is given in the question that the parabola passes through the points \[\left( 0,2 \right),\left( -1,0 \right)\] and \[\left( 1,6 \right)\]. Since the parabola passes through the three points, we know that these points must satisfy the equation of the parabola. So, we can substitute each point in the equation $\left( i \right)$ and formulate three sets of equations.
Considering the first point \[\left( 0,2 \right)\] and substituting the values of \[x=0,y=2\] in equation $\left( i \right)$, we get
\[\begin{align}
& 2=a\times 0+b\times 0+c \\
& c=2\ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Considering the second point \[\left( -1,0 \right)\] and substituting the values of \[x=-1,y=0\] in equation $\left( i \right)$, we get
\[\begin{align}
& 0=a\times {{\left( -1 \right)}^{2}}+b\times -1+c \\
& 0=a-b+c \\
\end{align}\]
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 0=a-b+2 \\
& b-a=2\ldots \ldots \ldots \left( iii \right) \\
\end{align}\]
Considering the last point \[\left( 1,6 \right)\] and substituting the values of \[x=1,y=6\] in equation $\left( i \right)$, we get
$\begin{align}
& 6=a\times {{1}^{2}}+b\times 1+c \\
& 6=a+b+c \\
\end{align}$
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 6=a+b+2 \\
& a+b=4\ldots \ldots \ldots \left( iv \right) \\
\end{align}\]
We have two equations \[\left( iii \right)\] and $\left( iv \right)$ to get the values of the \[a\] and $b$. So, adding the equations,
\[\dfrac{\begin{align}
& b-a=2 \\
& a+b=4 \\
\end{align}}{\begin{align}
& 2b=6 \\
& b=3 \\
\end{align}}\]
Substituting \[b=3\] in equation \[\left( iii \right)\], we get
\[\begin{align}
& 3-a=2 \\
& a=1 \\
\end{align}\]
Now we have the values as $a=1,b=3,c=2$. So, we can substitute this in equation $\left( i \right)$,
\[y={{x}^{2}}+3x+2\]
Therefore, the required equation of the parabola is obtained as \[y={{x}^{2}}+3x+2\].
Note: As three points are given in the question, we can formulate three equations and easily compute the three unknowns in the equation. If you are familiar with the cross-multiplication method, you can solve the equations and get the values of \[a,b,c\] in less time.
Complete step-by-step answer:
In the question, it is given that the axis of the parabola is parallel to the $y-$axis. So, the parabola would look like the figure below.
We know that the general formula for this form of parabola is given by,
\[y=a{{x}^{2}}+bx+c\ldots \ldots \ldots \left( i \right)\]
It is given in the question that the parabola passes through the points \[\left( 0,2 \right),\left( -1,0 \right)\] and \[\left( 1,6 \right)\]. Since the parabola passes through the three points, we know that these points must satisfy the equation of the parabola. So, we can substitute each point in the equation $\left( i \right)$ and formulate three sets of equations.
Considering the first point \[\left( 0,2 \right)\] and substituting the values of \[x=0,y=2\] in equation $\left( i \right)$, we get
\[\begin{align}
& 2=a\times 0+b\times 0+c \\
& c=2\ldots \ldots \ldots \left( ii \right) \\
\end{align}\]
Considering the second point \[\left( -1,0 \right)\] and substituting the values of \[x=-1,y=0\] in equation $\left( i \right)$, we get
\[\begin{align}
& 0=a\times {{\left( -1 \right)}^{2}}+b\times -1+c \\
& 0=a-b+c \\
\end{align}\]
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 0=a-b+2 \\
& b-a=2\ldots \ldots \ldots \left( iii \right) \\
\end{align}\]
Considering the last point \[\left( 1,6 \right)\] and substituting the values of \[x=1,y=6\] in equation $\left( i \right)$, we get
$\begin{align}
& 6=a\times {{1}^{2}}+b\times 1+c \\
& 6=a+b+c \\
\end{align}$
Now substituting the value of \[c\] from equation $\left( ii \right)$ in the above equation, we get
\[\begin{align}
& 6=a+b+2 \\
& a+b=4\ldots \ldots \ldots \left( iv \right) \\
\end{align}\]
We have two equations \[\left( iii \right)\] and $\left( iv \right)$ to get the values of the \[a\] and $b$. So, adding the equations,
\[\dfrac{\begin{align}
& b-a=2 \\
& a+b=4 \\
\end{align}}{\begin{align}
& 2b=6 \\
& b=3 \\
\end{align}}\]
Substituting \[b=3\] in equation \[\left( iii \right)\], we get
\[\begin{align}
& 3-a=2 \\
& a=1 \\
\end{align}\]
Now we have the values as $a=1,b=3,c=2$. So, we can substitute this in equation $\left( i \right)$,
\[y={{x}^{2}}+3x+2\]
Therefore, the required equation of the parabola is obtained as \[y={{x}^{2}}+3x+2\].
Note: As three points are given in the question, we can formulate three equations and easily compute the three unknowns in the equation. If you are familiar with the cross-multiplication method, you can solve the equations and get the values of \[a,b,c\] in less time.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE