Answer
Verified
467.7k+ views
Hint: Assume an equation of line having equal intercepts. The intersection point of the other two lines given in the question lies on the assumed line.
Before proceeding with the question, we must know that the equation of a line which is
make intercept of length $'a'$ on $x-$axis and intercept of length $'b'$ on $y-$axis is given by,
$\dfrac{x}{a}+\dfrac{y}{b}=1...........\left( 1 \right)$
It is given in the question that the line has equal intercepts on both the $x$ and $y$ axis. For this line, let
us consider the length of both the intercepts equal to $'a'$. To find the equation of this line, we will
substitute $b=a$ in equation $\left( 1 \right)$. The equation of this line,
\[\begin{align}
& \dfrac{x}{a}+\dfrac{y}{a}=1 \\
& \Rightarrow \dfrac{x+y}{a}=1 \\
& \Rightarrow x+y=a............\left( 2 \right) \\
\end{align}\]
It is given in the question that this line in equation $\left( 2 \right)$ passes through the intersection
of the lines,
$4x-7y-3=0..........\left( 3 \right)$
And $2x-3y+1=0............\left( 4 \right)$
To find the intersection point, we will solve the two lines with each other. Multiplying line in
equation $\left( 4 \right)$ by $2$, we get,
$4x-6y+2=0...........\left( 5 \right)$
Subtracting line in equation $\left( 3 \right)$ from line in equation $\left( 4 \right)$, we get,
\[\begin{align}
& \left( 4x-6y+2 \right)-\left( 4x-7y-3 \right)=0-0 \\
& \Rightarrow y+5=0 \\
& \Rightarrow y=-5............\left( 6 \right) \\
\end{align}\]
Substituting $y=-5$ from equation $\left( 6 \right)$ in equation $\left( 3 \right)$, we get,
$\begin{align}
& 4x-7\left( -5 \right)-3=0 \\
& \Rightarrow 4x+35-3=0 \\
& \Rightarrow 4x=-32 \\
& \Rightarrow x=-8.........\left( 7 \right) \\
\end{align}$
From equation $\left( 6 \right)$ and equation $\left( 7 \right)$, we get the intersection points of
lines $4x-7y-3=0$ and $2x-3y+1=0$ $\equiv \left( -8,-5 \right)$.
It is given in the question that the line in equation $\left( 2 \right)$ passes through the intersection
of the lines $4x-7y-3=0$ and $2x-3y+1=0$ i.e. $\left( -8,-5 \right)$. So, substituting $\left( -8,-5
\right)$ in the line in equation $\left( 2 \right)$, we get,
$\begin{align}
& \left( -8 \right)+\left( -5 \right)=a \\
& \Rightarrow a=-13..........\left( 8 \right) \\
\end{align}$
Substituting $a=-13$ from equation $\left( 8 \right)$ in equation $\left( 2 \right)$, we get the
required equation of line,
$x+y=-13$
Or $x+y+13=0$
Note: There is an alternate approach to solve this if one cannot remember the intercept form of the line as in equation $\left( 1 \right)$. The other method from which we can find this equation is, just assume two points $\left( a,0 \right),\left( 0,b \right)$ and apply a two-point form formula to get the equation of line.
Before proceeding with the question, we must know that the equation of a line which is
make intercept of length $'a'$ on $x-$axis and intercept of length $'b'$ on $y-$axis is given by,
$\dfrac{x}{a}+\dfrac{y}{b}=1...........\left( 1 \right)$
It is given in the question that the line has equal intercepts on both the $x$ and $y$ axis. For this line, let
us consider the length of both the intercepts equal to $'a'$. To find the equation of this line, we will
substitute $b=a$ in equation $\left( 1 \right)$. The equation of this line,
\[\begin{align}
& \dfrac{x}{a}+\dfrac{y}{a}=1 \\
& \Rightarrow \dfrac{x+y}{a}=1 \\
& \Rightarrow x+y=a............\left( 2 \right) \\
\end{align}\]
It is given in the question that this line in equation $\left( 2 \right)$ passes through the intersection
of the lines,
$4x-7y-3=0..........\left( 3 \right)$
And $2x-3y+1=0............\left( 4 \right)$
To find the intersection point, we will solve the two lines with each other. Multiplying line in
equation $\left( 4 \right)$ by $2$, we get,
$4x-6y+2=0...........\left( 5 \right)$
Subtracting line in equation $\left( 3 \right)$ from line in equation $\left( 4 \right)$, we get,
\[\begin{align}
& \left( 4x-6y+2 \right)-\left( 4x-7y-3 \right)=0-0 \\
& \Rightarrow y+5=0 \\
& \Rightarrow y=-5............\left( 6 \right) \\
\end{align}\]
Substituting $y=-5$ from equation $\left( 6 \right)$ in equation $\left( 3 \right)$, we get,
$\begin{align}
& 4x-7\left( -5 \right)-3=0 \\
& \Rightarrow 4x+35-3=0 \\
& \Rightarrow 4x=-32 \\
& \Rightarrow x=-8.........\left( 7 \right) \\
\end{align}$
From equation $\left( 6 \right)$ and equation $\left( 7 \right)$, we get the intersection points of
lines $4x-7y-3=0$ and $2x-3y+1=0$ $\equiv \left( -8,-5 \right)$.
It is given in the question that the line in equation $\left( 2 \right)$ passes through the intersection
of the lines $4x-7y-3=0$ and $2x-3y+1=0$ i.e. $\left( -8,-5 \right)$. So, substituting $\left( -8,-5
\right)$ in the line in equation $\left( 2 \right)$, we get,
$\begin{align}
& \left( -8 \right)+\left( -5 \right)=a \\
& \Rightarrow a=-13..........\left( 8 \right) \\
\end{align}$
Substituting $a=-13$ from equation $\left( 8 \right)$ in equation $\left( 2 \right)$, we get the
required equation of line,
$x+y=-13$
Or $x+y+13=0$
Note: There is an alternate approach to solve this if one cannot remember the intercept form of the line as in equation $\left( 1 \right)$. The other method from which we can find this equation is, just assume two points $\left( a,0 \right),\left( 0,b \right)$ and apply a two-point form formula to get the equation of line.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
What are the monomers and polymers of carbohydrate class 12 chemistry CBSE