Answer
Verified
429k+ views
Hint: We first define the general equation of hyperbola and its different parts. We then equate that with the given values of foci and eccentricity. Using the values, we find out the common characteristics of the conic and also the equation of the hyperbola.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.
Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.
Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths