
Find the equation of the hyperbola whose foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2.
Answer
463.5k+ views
Hint: We first define the general equation of hyperbola and its different parts. We then equate that with the given values of foci and eccentricity. Using the values, we find out the common characteristics of the conic and also the equation of the hyperbola.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.
Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Complete step by step answer:
We define the general equation of hyperbola and its different parts.
General equation of ellipse is $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$. The eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
The centre will be $\left( \alpha ,\beta \right)$. Coordinates of vertices are $\left( \alpha \pm a,\beta \right)$. Coordinates of foci are $\left( \alpha \pm ae,\beta \right)$. Equations of the directrices are $x=\alpha \pm \dfrac{a}{e}$. The difference between two foci is $2ae$.
Now for our given hyperbola foci are $\left( 4,2 \right)$ and $\left( 8,2 \right)$ with eccentricity 2. The difference between two foci are $\left| 8-4 \right|=4$ unit. So, $2ae=4\Rightarrow ae=2$.
Equating the y coordinate of the foci we get $\beta =2$.
Equating the x coordinate of the foci we get $\alpha \pm ae=4,8$.
The eccentricity of the ellipse is \[e=2\]. So, $2a=2\Rightarrow a=1$.
The general formula of eccentricity of the ellipse is \[e=\sqrt{1+\dfrac{{{b}^{2}}}{{{a}^{2}}}}\].
Putting values, we get \[2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}}\]. Solving we get
\[\begin{align}
& 2=\sqrt{1+\dfrac{{{b}^{2}}}{{{1}^{2}}}} \\
& \Rightarrow 1+{{b}^{2}}={{2}^{2}}=4 \\
& \Rightarrow {{b}^{2}}=3 \\
\end{align}\]
From the equation $\alpha \pm ae=4,8$, we get the value of $\alpha =6$.
We now place all the values of $\alpha ,\beta ,a,b$ in $\dfrac{{{\left( x-\alpha \right)}^{2}}}{{{a}^{2}}}-\dfrac{{{\left( y-\beta \right)}^{2}}}{{{b}^{2}}}=1$ to find the equation.
The equation is $\dfrac{{{\left( x-6 \right)}^{2}}}{1}-\dfrac{{{\left( y-2 \right)}^{2}}}{3}=1\Rightarrow 3{{\left( x-6 \right)}^{2}}-{{\left( y-2 \right)}^{2}}=3$.

Note: We need to remember that the foci are on the axis of the hyperbola. So, they are on the same line and that’s why we found the distance of the foci as the difference of their y coordinates. When we get the square values of a and b we don’t need to solve as in the equation they are already in their square form.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
