# Find the equation of the director circle of the circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$

Answer

Verified

362.4k+ views

Hint- Here, we will be using the general equation of the director circle to any given circle. The required equation of the director circle is obtained by finding the radius of the given circle and then multiplying it with $\sqrt 2 $ in order to get the radius of the director circle.

Complete step-by-step answer:

Given equation of circle is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}{\text{ }} \to {\text{(1)}}$

The general equation of any circle having centre coordinates (b,c) and radius r is given by

${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}{\text{ }} \to {\text{(2)}}$

By comparing equations (1) and (2), we have

The centre coordinates of the given circle is (h,k) and radius of the given circle is a.

As we know that the director circle is the locus of the point of intersection of two perpendicular tangents to the given circle.

For any general circle whose equation is ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}$, the equation of director circle is given by ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {\left( {\sqrt 2 r} \right)^2}$.

Clearly, in the case of a director circle the coordinates of the centre of the director circle and the given circle will be the same whereas the radius of the director circle will become $\sqrt 2 $ times the radius of the given circle.

So, the radius of the director circle for the given circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ whose radius is a will become $\sqrt 2 a$ and the centre coordinates of the director circle being the same as that of the i.e., (h,k).

So, the equation of director circle with centre coordinates (h,k) and radius $\sqrt 2 a$ is given by

$

{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {\left( {\sqrt 2 a} \right)^2} \\

\Rightarrow {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2} \\

$

Hence equation of the director circle of the circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2}$.

Note- In this problem, the figure is drawn and point P in the figure represents the point of intersection of two perpendicular tangents to the given radius. The locus of this point P will give the director circle to the given circle (any point on the outer circle whose radius is $\sqrt 2 a$ corresponds to the point of intersection of two perpendicular tangents to the smaller circle whose radius is a).

Complete step-by-step answer:

Given equation of circle is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}{\text{ }} \to {\text{(1)}}$

The general equation of any circle having centre coordinates (b,c) and radius r is given by

${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}{\text{ }} \to {\text{(2)}}$

By comparing equations (1) and (2), we have

The centre coordinates of the given circle is (h,k) and radius of the given circle is a.

As we know that the director circle is the locus of the point of intersection of two perpendicular tangents to the given circle.

For any general circle whose equation is ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}$, the equation of director circle is given by ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {\left( {\sqrt 2 r} \right)^2}$.

Clearly, in the case of a director circle the coordinates of the centre of the director circle and the given circle will be the same whereas the radius of the director circle will become $\sqrt 2 $ times the radius of the given circle.

So, the radius of the director circle for the given circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ whose radius is a will become $\sqrt 2 a$ and the centre coordinates of the director circle being the same as that of the i.e., (h,k).

So, the equation of director circle with centre coordinates (h,k) and radius $\sqrt 2 a$ is given by

$

{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {\left( {\sqrt 2 a} \right)^2} \\

\Rightarrow {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2} \\

$

Hence equation of the director circle of the circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2}$.

Note- In this problem, the figure is drawn and point P in the figure represents the point of intersection of two perpendicular tangents to the given radius. The locus of this point P will give the director circle to the given circle (any point on the outer circle whose radius is $\sqrt 2 a$ corresponds to the point of intersection of two perpendicular tangents to the smaller circle whose radius is a).

Last updated date: 22nd Sep 2023

â€¢

Total views: 362.4k

â€¢

Views today: 7.62k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE