Answer

Verified

449.1k+ views

Hint- Here, we will be using the general equation of the director circle to any given circle. The required equation of the director circle is obtained by finding the radius of the given circle and then multiplying it with $\sqrt 2 $ in order to get the radius of the director circle.

Complete step-by-step answer:

Given equation of circle is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}{\text{ }} \to {\text{(1)}}$

The general equation of any circle having centre coordinates (b,c) and radius r is given by

${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}{\text{ }} \to {\text{(2)}}$

By comparing equations (1) and (2), we have

The centre coordinates of the given circle is (h,k) and radius of the given circle is a.

As we know that the director circle is the locus of the point of intersection of two perpendicular tangents to the given circle.

For any general circle whose equation is ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}$, the equation of director circle is given by ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {\left( {\sqrt 2 r} \right)^2}$.

Clearly, in the case of a director circle the coordinates of the centre of the director circle and the given circle will be the same whereas the radius of the director circle will become $\sqrt 2 $ times the radius of the given circle.

So, the radius of the director circle for the given circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ whose radius is a will become $\sqrt 2 a$ and the centre coordinates of the director circle being the same as that of the i.e., (h,k).

So, the equation of director circle with centre coordinates (h,k) and radius $\sqrt 2 a$ is given by

$

{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {\left( {\sqrt 2 a} \right)^2} \\

\Rightarrow {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2} \\

$

Hence equation of the director circle of the circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2}$.

Note- In this problem, the figure is drawn and point P in the figure represents the point of intersection of two perpendicular tangents to the given radius. The locus of this point P will give the director circle to the given circle (any point on the outer circle whose radius is $\sqrt 2 a$ corresponds to the point of intersection of two perpendicular tangents to the smaller circle whose radius is a).

Complete step-by-step answer:

Given equation of circle is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}{\text{ }} \to {\text{(1)}}$

The general equation of any circle having centre coordinates (b,c) and radius r is given by

${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}{\text{ }} \to {\text{(2)}}$

By comparing equations (1) and (2), we have

The centre coordinates of the given circle is (h,k) and radius of the given circle is a.

As we know that the director circle is the locus of the point of intersection of two perpendicular tangents to the given circle.

For any general circle whose equation is ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {r^2}$, the equation of director circle is given by ${\left( {x - b} \right)^2} + {\left( {y - c} \right)^2} = {\left( {\sqrt 2 r} \right)^2}$.

Clearly, in the case of a director circle the coordinates of the centre of the director circle and the given circle will be the same whereas the radius of the director circle will become $\sqrt 2 $ times the radius of the given circle.

So, the radius of the director circle for the given circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ whose radius is a will become $\sqrt 2 a$ and the centre coordinates of the director circle being the same as that of the i.e., (h,k).

So, the equation of director circle with centre coordinates (h,k) and radius $\sqrt 2 a$ is given by

$

{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {\left( {\sqrt 2 a} \right)^2} \\

\Rightarrow {\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2} \\

$

Hence equation of the director circle of the circle ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {a^2}$ is ${\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = 2{a^2}$.

Note- In this problem, the figure is drawn and point P in the figure represents the point of intersection of two perpendicular tangents to the given radius. The locus of this point P will give the director circle to the given circle (any point on the outer circle whose radius is $\sqrt 2 a$ corresponds to the point of intersection of two perpendicular tangents to the smaller circle whose radius is a).

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE