
Find the equation of the bisector of the angle $A$ of the triangle whose vertices are $A\left( {4,3} \right)$, $B\left( {0,0} \right)$ and \[C\left( {2,3} \right)\].
Answer
577.8k+ views
Hint: We will first draw the diagram for the corresponding conditions. Let $AM$ be the angle bisector angle $A$. Then, find the coordinates of $M$ using the property of angle bisector and section formula. Then, find the equation of line $AM$ from the coordinates of $A$ and $M$.
Complete step by step solution: We are given that the coordinates of vertices of a triangle are $A\left( {4,3} \right)$, $B\left( {0,0} \right)$ and \[C\left( {2,3} \right)\]
Let $AM$ be the angle bisector of angle $A$
We will first draw the corresponding figure.
Since $AM$ is an angle bisector, then $AM$ divides the opposite sides of the triangle into two segments which are proportional to the distance of the other two sides.
That is, $AM$ divides $BC$ in the ratio of $AB: AC$
Hence, $AB:AC = AM:MC$
Now, let us find the distance $AB$ and the distance $AC$ using the distance formula,
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points, then distance between them is calculated as \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
$
AB = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \\
\Rightarrow AB = \sqrt {16 + 9} \\
\Rightarrow AB = \sqrt {25} \\
\Rightarrow AB = 5 \\
$
Similarly the distance of $AC$ is,
$
AC = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \\
\Rightarrow AC = \sqrt {4 + 0} \\
\Rightarrow AC = \sqrt 4 \\
\Rightarrow AC = 2 \\
$
Thus, the ratio of $AB: AC$ is 5:2 which is also equal to $AM: MC$.
We shall now find the coordinates of $M$ using section formula,
Section formula states that, if \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points and they are divided by the point $\left( {{x_3},{y_3}} \right)$ in $m:n$,
then the coordinates of $\left( {{x_3},{y_3}} \right)$ are $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$
Therefore, the coordinates of $M$ can be calculated as,
$
M = \left( {\dfrac{{\left( 5 \right)2 + \left( 2 \right)0}}{{5 + 2}},\dfrac{{\left( 5 \right)3 + \left( 2 \right)0}}{{5 + 2}}} \right) \\
M = \left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right) \\
$
Next, we will find the equation of line $AM$ using the points $A\left( {4,3} \right)$ and $\left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right)$
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points, then the equation of line is given as,
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Therefore, equation of $AM$is
$
y - \dfrac{{15}}{7} = \dfrac{{3 - \dfrac{{15}}{7}}}{{4 - \dfrac{{10}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow y - \dfrac{{15}}{7} = \dfrac{{\dfrac{6}{7}}}{{\dfrac{{18}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow y - \dfrac{{15}}{7} = \dfrac{1}{3}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow 3y - \dfrac{{45}}{7} = x - \dfrac{{10}}{7} \\
\Rightarrow 3y - x - \dfrac{{45}}{7} + \dfrac{{10}}{7} = 0 \\
\Rightarrow 3y - x - \dfrac{{35}}{7} = 0 \\
\Rightarrow 3y - x - 5 = 0 \\
$
Hence, the equation of the bisector of the angle $A$ of the triangle whose vertices are $A\left( {4,3} \right)$, $B\left( {0,0} \right)$ and \[C\left( {2,3} \right)\] is \[3y - x - 5 = 0\].
Note: Section formula is used to find the coordinates of the point when the point divides the line joined by two points in a certain ratio. If the point $\left( {{x_3},{y_3}} \right)$ divides the line internally joined by the points, \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\], then the coordinates of the point is given as $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$. But, if the point $\left( {{x_3},{y_3}} \right)$ divides the line externally, then the coordinates of the point is given as $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} - n{x_1}}}{{m - n}},\dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right)$
Complete step by step solution: We are given that the coordinates of vertices of a triangle are $A\left( {4,3} \right)$, $B\left( {0,0} \right)$ and \[C\left( {2,3} \right)\]
Let $AM$ be the angle bisector of angle $A$
We will first draw the corresponding figure.
Since $AM$ is an angle bisector, then $AM$ divides the opposite sides of the triangle into two segments which are proportional to the distance of the other two sides.
That is, $AM$ divides $BC$ in the ratio of $AB: AC$
Hence, $AB:AC = AM:MC$
Now, let us find the distance $AB$ and the distance $AC$ using the distance formula,
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points, then distance between them is calculated as \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]
$
AB = \sqrt {{{\left( {4 - 0} \right)}^2} + {{\left( {3 - 0} \right)}^2}} \\
\Rightarrow AB = \sqrt {16 + 9} \\
\Rightarrow AB = \sqrt {25} \\
\Rightarrow AB = 5 \\
$
Similarly the distance of $AC$ is,
$
AC = \sqrt {{{\left( {4 - 2} \right)}^2} + {{\left( {3 - 3} \right)}^2}} \\
\Rightarrow AC = \sqrt {4 + 0} \\
\Rightarrow AC = \sqrt 4 \\
\Rightarrow AC = 2 \\
$
Thus, the ratio of $AB: AC$ is 5:2 which is also equal to $AM: MC$.
We shall now find the coordinates of $M$ using section formula,
Section formula states that, if \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points and they are divided by the point $\left( {{x_3},{y_3}} \right)$ in $m:n$,
then the coordinates of $\left( {{x_3},{y_3}} \right)$ are $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$
Therefore, the coordinates of $M$ can be calculated as,
$
M = \left( {\dfrac{{\left( 5 \right)2 + \left( 2 \right)0}}{{5 + 2}},\dfrac{{\left( 5 \right)3 + \left( 2 \right)0}}{{5 + 2}}} \right) \\
M = \left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right) \\
$
Next, we will find the equation of line $AM$ using the points $A\left( {4,3} \right)$ and $\left( {\dfrac{{10}}{7},\dfrac{{15}}{7}} \right)$
If \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] are coordinates of two points, then the equation of line is given as,
\[y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {x - {x_1}} \right)\]
Therefore, equation of $AM$is
$
y - \dfrac{{15}}{7} = \dfrac{{3 - \dfrac{{15}}{7}}}{{4 - \dfrac{{10}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow y - \dfrac{{15}}{7} = \dfrac{{\dfrac{6}{7}}}{{\dfrac{{18}}{7}}}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow y - \dfrac{{15}}{7} = \dfrac{1}{3}\left( {x - \dfrac{{10}}{7}} \right) \\
\Rightarrow 3y - \dfrac{{45}}{7} = x - \dfrac{{10}}{7} \\
\Rightarrow 3y - x - \dfrac{{45}}{7} + \dfrac{{10}}{7} = 0 \\
\Rightarrow 3y - x - \dfrac{{35}}{7} = 0 \\
\Rightarrow 3y - x - 5 = 0 \\
$
Hence, the equation of the bisector of the angle $A$ of the triangle whose vertices are $A\left( {4,3} \right)$, $B\left( {0,0} \right)$ and \[C\left( {2,3} \right)\] is \[3y - x - 5 = 0\].
Note: Section formula is used to find the coordinates of the point when the point divides the line joined by two points in a certain ratio. If the point $\left( {{x_3},{y_3}} \right)$ divides the line internally joined by the points, \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\], then the coordinates of the point is given as $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)$. But, if the point $\left( {{x_3},{y_3}} \right)$ divides the line externally, then the coordinates of the point is given as $\left( {{x_3},{y_3}} \right) = \left( {\dfrac{{m{x_2} - n{x_1}}}{{m - n}},\dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right)$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

