
Find the equation of line which makes an angle $\alpha $ with x-axis and cut an intercept of length a on it.
Answer
607.2k+ views
Hint: Draw the line on coordinate plane and use equation of line when slope and one point is given i.e. $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$
Complete step-by-step answer:
We have information given from question as
Line makes an angle $\alpha $ with x-axis
Line cuts an intercept of length ‘a’ with x-axis
We know that slope of any line is defined as the tan of angle formed by line with the positive direction of x-axis. Here the angle given is $\alpha $ with the x-axis from point (1).
Hence, the slope of the given line is tan$\alpha $.
Now, coming to the second point; the intercept with x-axis is ‘a’. We already know that the intercept of a line is the length from origin on that axis to the point where the line cuts the axis.
Here, line has intercept of ‘a’ on x-axis, hence we can represent the given line as;
From the given diagram we can write the coordinates of A as (a,0).
As we know that equation of any line can be given by $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$, if we have a point and slope.
Now, the slope of the line given is tan$\alpha $and one point lying on line is (a,0). So, line can be given by
$y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$
Where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( a,0 \right)$ from the diagram
Slope = tan$\alpha $
Hence, line is given by
$\begin{align}
& y-0=\tan \left( x-a \right) \\
& y=x\tan \alpha -a\tan \alpha \\
\end{align}$
Writing in the standard form of line i.e. Ax + By + C=0, we can write the equation of line as
$x\tan \alpha -y-a\tan \alpha =0$
Note: One can go wrong with the intercept ‘a’ given. One can take that intercept on y-axis and write the equation of line by y = mx + C, where C is y-intercept and m is slope. Hence the above equation becomes $y=x\tan \alpha +a$ which is wrong as ‘a’ is intercept on x-axis not on y-axis.
Complete step-by-step answer:
We have information given from question as
Line makes an angle $\alpha $ with x-axis
Line cuts an intercept of length ‘a’ with x-axis
We know that slope of any line is defined as the tan of angle formed by line with the positive direction of x-axis. Here the angle given is $\alpha $ with the x-axis from point (1).
Hence, the slope of the given line is tan$\alpha $.
Now, coming to the second point; the intercept with x-axis is ‘a’. We already know that the intercept of a line is the length from origin on that axis to the point where the line cuts the axis.
Here, line has intercept of ‘a’ on x-axis, hence we can represent the given line as;
From the given diagram we can write the coordinates of A as (a,0).
As we know that equation of any line can be given by $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$, if we have a point and slope.
Now, the slope of the line given is tan$\alpha $and one point lying on line is (a,0). So, line can be given by
$y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$
Where $\left( {{x}_{1}},{{y}_{1}} \right)=\left( a,0 \right)$ from the diagram
Slope = tan$\alpha $
Hence, line is given by
$\begin{align}
& y-0=\tan \left( x-a \right) \\
& y=x\tan \alpha -a\tan \alpha \\
\end{align}$
Writing in the standard form of line i.e. Ax + By + C=0, we can write the equation of line as
$x\tan \alpha -y-a\tan \alpha =0$
Note: One can go wrong with the intercept ‘a’ given. One can take that intercept on y-axis and write the equation of line by y = mx + C, where C is y-intercept and m is slope. Hence the above equation becomes $y=x\tan \alpha +a$ which is wrong as ‘a’ is intercept on x-axis not on y-axis.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

