
Find the equation of circle whose center is $( - 3,1)$ and which pass through the point $(5,2)$
Answer
504.3k+ views
Hint: Coordinate geometry is defined as the study of the geometry using the coordinates points. Using coordinate geometry we find the distance between the two points. Circle in the coordinate geometry, the equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$.
If the coordinate satisfies the equation then the point is in the circle.
Here,
P=Perimeter of circle
R=radius of circle.
Complete step-by-step solution:
Given,
Center of circle$ = ( - 3,1)$
Pass through$ = (5,2)$
Radius of circle=?
As we know that radius is,
$\therefore r = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Put the value
$ \Rightarrow r = \sqrt {{{\{ 5 - ( - 3)\} }^2} + {{(2 - 1)}^2}} $
Simplify
$ \Rightarrow r = \sqrt {{8^2} + {1^2}} $
$ \Rightarrow r = \sqrt {64 + 1} $
$ \Rightarrow r = \sqrt {65} $
Radius of the circle is $\sqrt {65} $
Cartesian equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Put the value.
$ \Rightarrow {(x - ( - 3))^2} + {(y - 1)^2} = {(\sqrt {65} )^2}$
$ \Rightarrow {(x + 3)^2} + {(y - 1)^2} = 65$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y + 10 - 65 = 0$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y - 55 = 0$
The required equation for circle is ${x^2} + {y^2} + 6x - 2y - 55 = 0$
Note: Here we could also find the equation of circle by assuming the general equation of circle and then we put the given points and apply the algebraic operation for finding the unknown variables but that would be a lengthy approach.
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$.
If the coordinate satisfies the equation then the point is in the circle.
Here,
P=Perimeter of circle
R=radius of circle.
Complete step-by-step solution:
Given,
Center of circle$ = ( - 3,1)$
Pass through$ = (5,2)$
Radius of circle=?
As we know that radius is,
$\therefore r = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Put the value
$ \Rightarrow r = \sqrt {{{\{ 5 - ( - 3)\} }^2} + {{(2 - 1)}^2}} $
Simplify
$ \Rightarrow r = \sqrt {{8^2} + {1^2}} $
$ \Rightarrow r = \sqrt {64 + 1} $
$ \Rightarrow r = \sqrt {65} $
Radius of the circle is $\sqrt {65} $
Cartesian equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Put the value.
$ \Rightarrow {(x - ( - 3))^2} + {(y - 1)^2} = {(\sqrt {65} )^2}$
$ \Rightarrow {(x + 3)^2} + {(y - 1)^2} = 65$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y + 10 - 65 = 0$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y - 55 = 0$
The required equation for circle is ${x^2} + {y^2} + 6x - 2y - 55 = 0$
Note: Here we could also find the equation of circle by assuming the general equation of circle and then we put the given points and apply the algebraic operation for finding the unknown variables but that would be a lengthy approach.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

