
Find the equation of circle passing through the intersection of ${{x}^{2}}+{{y}^{2}}=4$ and ${{x}^{2}}+{{y}^{2}}-2x-4y+4=0$ and touching the line $x+2y=0$
Answer
511.8k+ views
Hint: Equation of family of circle is${{S}_{1}}+\lambda {{S}_{2}}=0$. So, there can be infinite number of circles passing through the intersection points of ${{x}^{2}}+{{y}^{2}}=4$and ${{x}^{2}}+{{y}^{2}}-2x-4y+4=0$. By substituting values in the Family of circle equation we get the centre of the circle. Hence, we can calculate radius using $\sqrt{{{\left( x \right)}^{2}}+{{\left( y \right)}^{2}}-c}$ where x and y are coordinates and c is the constant in the equation.
Then find the perpendicular distance between radius and tangent to get the value of $\lambda $.
Then substitute this value in the equation of the family of circles.
Complete step by step answer:
Let us consider,
${{S}_{1}}={{x}^{2}}+{{y}^{2}}-4$ and ${{S}_{2}}={{x}^{2}}+{{y}^{2}}-2x-4y+4$
Now substitute this value in the family of circles equation.
$\begin{align}
& {{S}_{1}}+\lambda {{S}_{2}}=0 \\
& {{x}^{2}}+{{y}^{2}}-2x-4y+4+\lambda \left( {{x}^{2}}+{{y}^{2}}-4 \right)=0 \\
\end{align}$
$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0......(1)$
Now divide the whole equation by $\left( \lambda +1 \right)$,
$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0$
${{x}^{2}}+{{y}^{2}}-\dfrac{2x}{\left( \lambda +1 \right)}-\dfrac{4y}{\left( \lambda +1 \right)}+\dfrac{4-4\lambda }{\left( \lambda +1 \right)}=0$
Now compare this equation with the general equation of circle $a{{x}^{2}}+b{{y}^{2}}+2gx+2fy+c=0$
Coordinates of centre are given by $\left( g,f \right)$
Therefore, coordinates of the circle will be $\left( \dfrac{1}{\lambda +1},\dfrac{2}{\lambda +1} \right)$
Radius is obtained by $\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)}$
Now substitute the values and find radius.
$\sqrt{{{\left( \dfrac{1}{\lambda +1} \right)}^{2}}+{{\left( \dfrac{2}{\lambda +1} \right)}^{2}}-\left( \dfrac{-4\lambda +4}{\lambda +1} \right)}$
$\sqrt{\left( \dfrac{1+4-\left( -4\lambda +4 \right)\left( \lambda +1 \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{5-\left( 4+4\lambda -4\lambda -4{{\lambda }^{2}} \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{5-4+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
As, our circle is touching $x+2y=0$ i.e. this line is a tangent to the circle.
We know that the tangent is perpendicular to the radius.
And the perpendicular distance is given by
Radius = $\left| \dfrac{g+2f}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|$ where a and b are the coordinates of the perpendicular.
Now substitute the values,
$\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{1}{\lambda +1} \right)+\left( \dfrac{4}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right|$
Squaring both the sides to remove root as well as modulus.
$\begin{align}
& \sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{5}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right| \\
& \left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)=\dfrac{25}{{{\left( \lambda +1 \right)}^{2}}\times 5} \\
& 1+4{{\lambda }^{2}}=5 \\
& 4{{\lambda }^{2}}=4 \\
& \lambda =\pm 1 \\
\end{align}$
But $\lambda $cannot be zero.
Hence, the value of $\lambda $ will be 1.
Therefore, the co-ordinates will be $\left( \dfrac{1}{2},\dfrac{2}{2} \right)$
Substitute these values in this$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y+4-4\lambda =0$ equation.
Hence, the equation of our required circle will be,
$\begin{align}
& \left( 1+1 \right){{x}^{2}}+\left( 1+1 \right){{y}^{2}}-2x-4y+4-4\left( 1 \right)=0 \\
& 2{{x}^{2}}+2{{y}^{2}}-2x-4y+4-4=0 \\
& {{x}^{2}}+{{y}^{2}}-x-2y=0 \\
\end{align}$
Hence, equation of circle is ${{x}^{2}}+{{y}^{2}}-x-2y=0$.
Note: Remember that the value of is to be taken positive. The formula of radius is $\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)}$ g, f being the centre of circle and c being the constant in the equation. In the formula of the perpendicular distance applying mod is necessary.
Then find the perpendicular distance between radius and tangent to get the value of $\lambda $.
Then substitute this value in the equation of the family of circles.
Complete step by step answer:
Let us consider,
${{S}_{1}}={{x}^{2}}+{{y}^{2}}-4$ and ${{S}_{2}}={{x}^{2}}+{{y}^{2}}-2x-4y+4$
Now substitute this value in the family of circles equation.
$\begin{align}
& {{S}_{1}}+\lambda {{S}_{2}}=0 \\
& {{x}^{2}}+{{y}^{2}}-2x-4y+4+\lambda \left( {{x}^{2}}+{{y}^{2}}-4 \right)=0 \\
\end{align}$
$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0......(1)$
Now divide the whole equation by $\left( \lambda +1 \right)$,
$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y-4\lambda +4=0$
${{x}^{2}}+{{y}^{2}}-\dfrac{2x}{\left( \lambda +1 \right)}-\dfrac{4y}{\left( \lambda +1 \right)}+\dfrac{4-4\lambda }{\left( \lambda +1 \right)}=0$
Now compare this equation with the general equation of circle $a{{x}^{2}}+b{{y}^{2}}+2gx+2fy+c=0$
Coordinates of centre are given by $\left( g,f \right)$
Therefore, coordinates of the circle will be $\left( \dfrac{1}{\lambda +1},\dfrac{2}{\lambda +1} \right)$
Radius is obtained by $\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)}$
Now substitute the values and find radius.
$\sqrt{{{\left( \dfrac{1}{\lambda +1} \right)}^{2}}+{{\left( \dfrac{2}{\lambda +1} \right)}^{2}}-\left( \dfrac{-4\lambda +4}{\lambda +1} \right)}$
$\sqrt{\left( \dfrac{1+4-\left( -4\lambda +4 \right)\left( \lambda +1 \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{5-\left( 4+4\lambda -4\lambda -4{{\lambda }^{2}} \right)}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{5-4+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
$\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}$
As, our circle is touching $x+2y=0$ i.e. this line is a tangent to the circle.
We know that the tangent is perpendicular to the radius.
And the perpendicular distance is given by
Radius = $\left| \dfrac{g+2f}{\sqrt{{{a}^{2}}+{{b}^{2}}}} \right|$ where a and b are the coordinates of the perpendicular.
Now substitute the values,
$\sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{1}{\lambda +1} \right)+\left( \dfrac{4}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right|$
Squaring both the sides to remove root as well as modulus.
$\begin{align}
& \sqrt{\left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)}=\left| \dfrac{\left( \dfrac{5}{\lambda +1} \right)}{\sqrt{{{\left( 1 \right)}^{2}}+{{\left( 2 \right)}^{2}}}} \right| \\
& \left( \dfrac{1+4{{\lambda }^{2}}}{{{\left( \lambda +1 \right)}^{2}}} \right)=\dfrac{25}{{{\left( \lambda +1 \right)}^{2}}\times 5} \\
& 1+4{{\lambda }^{2}}=5 \\
& 4{{\lambda }^{2}}=4 \\
& \lambda =\pm 1 \\
\end{align}$
But $\lambda $cannot be zero.
Hence, the value of $\lambda $ will be 1.
Therefore, the co-ordinates will be $\left( \dfrac{1}{2},\dfrac{2}{2} \right)$
Substitute these values in this$\left( \lambda +1 \right){{x}^{2}}+\left( \lambda +1 \right){{y}^{2}}-2x-4y+4-4\lambda =0$ equation.
Hence, the equation of our required circle will be,
$\begin{align}
& \left( 1+1 \right){{x}^{2}}+\left( 1+1 \right){{y}^{2}}-2x-4y+4-4\left( 1 \right)=0 \\
& 2{{x}^{2}}+2{{y}^{2}}-2x-4y+4-4=0 \\
& {{x}^{2}}+{{y}^{2}}-x-2y=0 \\
\end{align}$
Hence, equation of circle is ${{x}^{2}}+{{y}^{2}}-x-2y=0$.
Note: Remember that the value of is to be taken positive. The formula of radius is $\sqrt{{{\left( g \right)}^{2}}+{{\left( f \right)}^{2}}-\left( c \right)}$ g, f being the centre of circle and c being the constant in the equation. In the formula of the perpendicular distance applying mod is necessary.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
