Answer

Verified

385.2k+ views

**Hint:**This is a question of 2D geometry. To find the equation of a circle with center and radius given we need to find the locus of a point which has a fixed distance as radius from the center point. We will be using the distance formula given by \[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\].

**Complete step by step answer:**

Here we are given the center as (2,4) and radius of the circle as 6 units. We will use the distance between points formula to find the locus of the point that is the circle.

The distance between two points in 2D , \[\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)\] is given by the distance formula as

\[\Rightarrow \]\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]

In the case of a circle this distance is fixed and called Radius (r) . So the equation can be given as

\[\Rightarrow \]\[\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}=r\]

Squaring both side we get

\[\Rightarrow \]\[{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}={{r}^{2}}.......(1)\]

In the above question we are given the fixed radius r that is 6 units and center (2,4).

Now we assume a point on the circle say (x,y)

Then in equation (1) we substitute the values \[\left( {{x}_{1}},{{y}_{1}} \right)\]as (2,4) and \[\left( {{x}_{2}},{{y}_{2}} \right)\] as (x,y) and r as 6.

Now we get

\[\Rightarrow \]\[{{\left( {{x}_{{}}}-{{2}_{{}}} \right)}^{2}}+{{\left( {{y}_{{}}}-4 \right)}^{2}}={{6}^{2}}\]

Thus the required equation of circle with center (2,4) and radius 6 is given by

\[\Rightarrow \]\[{{\left( {{x}_{{}}}-{{2}_{{}}} \right)}^{2}}+{{\left( {{y}_{{}}}-4 \right)}^{2}}={{6}^{2}}\]

**Note:**

The required equation can also be calculated by comparing the given terms to the general form of equation of circle that is \[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c\] where the center of circle is given by

(-g.-f) and radius is given as \[r=\sqrt{{{g}^{2}}+{{f}^{2}}-{{c}^{2}}}\].

Calculating the values of g, f and c and substituting back to the general equation we can get the required equation of the circle.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference Between Plant Cell and Animal Cell

Change the following sentences into negative and interrogative class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers