Answer

Verified

421.5k+ views

Hint: Here we will be using the equation of common chord which is ${\text{S - }}{{\text{S}}_1}{\text{ = 0}}$ along with the concept of how to find the perpendicular distance from a single point to a straight line.

Complete step-by-step answer:

We know that

The equation of the common chord is given by ${\text{S - }}{{\text{S}}_1}{\text{ = 0}}$, Where are two circles.

\[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\] & \[{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2 = 0}}\] respectively.

Here we are just representing the equation of circle \[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\] by S and \[{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2 = 0}}\] by ${{\text{S}}_1}$

⟹ on applying the result S−S1=0

⟹\[\left( {{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1}}} \right){\text{ - }}\left( {{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2}}} \right) = 0\]

i.e., 2x+y+1=0

On subtracting the equation of circle S and ${{\text{S}}_1}$ we get the equation of the common chord which is 2x+y+1=0

Equation of 1st circle S= \[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\]

General equation of circle is \[{\text{a}}{{\text{x}}^2} + {\text{b}}{{\text{y}}^2} + 2g{\text{x + 2hy + c = 0}}\]

Center of S=0 is (−g, −f)

So on comparing General equation of circle with equation of 1st circle

Center of S=0 is (−1, −1) which is coordinate of Point O

We know the formula of Radius of circle which is $\sqrt {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} $

Radius OB =\[\sqrt {{{( - 1)}^2} + {{( - 1)}^2} - 1} \]

Radius OB (r) = 1cm

Length of the perpendicular OC represented by d in shown figure from the center is given by,

${\text{d = }}\left| {\dfrac{{{\text{ax + by + c}}}}{{\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} }}} \right|$

∴ If O (−1, −1) is the center, so to find the length of the perpendicular to the chord,

In the above formula, put coordinates of O which is the center of the circle, in place of x & y. From the equation of the common chord which is 2x+y+1=0 so, a=2, b=1 and c=1

On putting all values in above formula

${\text{d = }}\left| {\dfrac{{{\text{2( - 1) + 1( - 1) + 1}}}}{{\sqrt {{2^2} + {1^2}} }}} \right|$

${\text{d = }}\left| {\dfrac{{\text{2}}}{{\sqrt 5 }}} \right|$

${\text{d = }}\dfrac{2}{{\sqrt 5 }}$

Length of the Chord AB is $2\sqrt {{{\text{r}}^2} - {{\text{d}}^2}} $. Which we can also find by Pythagoras theorem.

=$2\sqrt {{1^2} - {{\left( {\dfrac{2}{{\sqrt 5 }}} \right)}^2}} $

= $2\sqrt {1 - \dfrac{4}{5}} $

= $2\sqrt {\dfrac{1}{5}} $

So length of the common chord = $\dfrac{2}{{\sqrt 5 }}$

Note: Whenever we came up with this type of problem where we are given the equation of circles or straight line, first make clear diagram then apply the available results like here we used equation of common chord and use different basic concept like perpendicular distance from a single point and Pythagoras theorem to find distance.

Complete step-by-step answer:

We know that

The equation of the common chord is given by ${\text{S - }}{{\text{S}}_1}{\text{ = 0}}$, Where are two circles.

\[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\] & \[{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2 = 0}}\] respectively.

Here we are just representing the equation of circle \[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\] by S and \[{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2 = 0}}\] by ${{\text{S}}_1}$

⟹ on applying the result S−S1=0

⟹\[\left( {{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1}}} \right){\text{ - }}\left( {{{\text{x}}^2} + {{\text{y}}^2} + 4{\text{x + 3y + 2}}} \right) = 0\]

i.e., 2x+y+1=0

On subtracting the equation of circle S and ${{\text{S}}_1}$ we get the equation of the common chord which is 2x+y+1=0

Equation of 1st circle S= \[{{\text{x}}^2} + {{\text{y}}^2} + 2{\text{x + 2y + 1 = 0}}\]

General equation of circle is \[{\text{a}}{{\text{x}}^2} + {\text{b}}{{\text{y}}^2} + 2g{\text{x + 2hy + c = 0}}\]

Center of S=0 is (−g, −f)

So on comparing General equation of circle with equation of 1st circle

Center of S=0 is (−1, −1) which is coordinate of Point O

We know the formula of Radius of circle which is $\sqrt {{{\text{g}}^2} + {{\text{f}}^2} - {\text{c}}} $

Radius OB =\[\sqrt {{{( - 1)}^2} + {{( - 1)}^2} - 1} \]

Radius OB (r) = 1cm

Length of the perpendicular OC represented by d in shown figure from the center is given by,

${\text{d = }}\left| {\dfrac{{{\text{ax + by + c}}}}{{\sqrt {{{\text{a}}^2} + {{\text{b}}^2}} }}} \right|$

∴ If O (−1, −1) is the center, so to find the length of the perpendicular to the chord,

In the above formula, put coordinates of O which is the center of the circle, in place of x & y. From the equation of the common chord which is 2x+y+1=0 so, a=2, b=1 and c=1

On putting all values in above formula

${\text{d = }}\left| {\dfrac{{{\text{2( - 1) + 1( - 1) + 1}}}}{{\sqrt {{2^2} + {1^2}} }}} \right|$

${\text{d = }}\left| {\dfrac{{\text{2}}}{{\sqrt 5 }}} \right|$

${\text{d = }}\dfrac{2}{{\sqrt 5 }}$

Length of the Chord AB is $2\sqrt {{{\text{r}}^2} - {{\text{d}}^2}} $. Which we can also find by Pythagoras theorem.

=$2\sqrt {{1^2} - {{\left( {\dfrac{2}{{\sqrt 5 }}} \right)}^2}} $

= $2\sqrt {1 - \dfrac{4}{5}} $

= $2\sqrt {\dfrac{1}{5}} $

So length of the common chord = $\dfrac{2}{{\sqrt 5 }}$

Note: Whenever we came up with this type of problem where we are given the equation of circles or straight line, first make clear diagram then apply the available results like here we used equation of common chord and use different basic concept like perpendicular distance from a single point and Pythagoras theorem to find distance.

Recently Updated Pages

Assertion The resistivity of a semiconductor increases class 13 physics CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

Trending doubts

State the differences between manure and fertilize class 8 biology CBSE

Why are xylem and phloem called complex tissues aBoth class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

What would happen if plasma membrane ruptures or breaks class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What precautions do you take while observing the nucleus class 11 biology CBSE

What would happen to the life of a cell if there was class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE