
How do you find the domain and range of $y={{\log }_{5}}x$?
Answer
445.5k+ views
Hint: The logarithm is used to convert a large or very small number into the understandable domain. For the theorem to work the usual conditions of logarithm will have to follow. We also need to remember that for logarithm function there has to be a domain constraint. The range in the usual case is the whole real line.
Complete step-by-step solution:
Let an arbitrary logarithmic function be $A={{\log }_{b}}a$. The conditions for the expression to be logical is $a,b>0;b\ne 1$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
In case of logarithmic numbers having powers, we have to multiply the power in front of the logarithm to get the single logarithmic function.
Let’s assume $y=f\left( x \right)={{\log }_{5}}x$.
We need to find the domain and range of $y={{\log }_{5}}x$.
Using the previous mentioned conditions, we can say that $x>0$.
The domain of the function is $\left( 0,\infty \right)$.
The range of any logarithm function is the whole real line.
Therefore, for the function $y={{\log }_{5}}x$, the range is $\mathbb{R}$.
Note: There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Complete step-by-step solution:
Let an arbitrary logarithmic function be $A={{\log }_{b}}a$. The conditions for the expression to be logical is $a,b>0;b\ne 1$.
We have $\log {{x}^{a}}=a\log x$. The power value of $a$ goes as a multiplication with $\log x$.
In case of logarithmic numbers having powers, we have to multiply the power in front of the logarithm to get the single logarithmic function.
Let’s assume $y=f\left( x \right)={{\log }_{5}}x$.
We need to find the domain and range of $y={{\log }_{5}}x$.
Using the previous mentioned conditions, we can say that $x>0$.
The domain of the function is $\left( 0,\infty \right)$.
The range of any logarithm function is the whole real line.
Therefore, for the function $y={{\log }_{5}}x$, the range is $\mathbb{R}$.
Note: There are some particular rules that we follow in case of finding the condensed form of logarithm. We first apply the power property first. Then we identify terms that are products of factors and a logarithm, and rewrite each as the logarithm of a power. Then we apply the product property. Rewrite sums of logarithms as the logarithm of a product. We also have the quotient property rules.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
