Answer
Verified
423k+ views
Hint: All the possible values that x can take are known as the domain, that is the domain of the function is defined as the values of the x for which a function exists. We get different values of y by putting different values of x, thus the range is defined as the set of all the possible values that a function can attain. Using the above-mentioned definition of domain and range of a function, we can find out the domain and range of the given function.
Complete step-by-step solution:
We are given that ${x^2} + {y^2} = 9$
We can rewrite it as –
\[y = \sqrt {9 - {x^2}} \]
For y to exist,
$
9 - {x^2} \geqslant 0 \\
\Rightarrow 9 \geqslant {x^2} \\
\Rightarrow {x^2} \leqslant 9 \\
$
Now square rooting both sides and then using the law of inequalities, we get –
$x \geqslant - 3,\,x \leqslant 3$
So, the domain of ${x^2} + {y^2} = 9$ is $[ - 3,3]$
To find the range, we will express x in terms of y –
$x = \sqrt {9 = {y^2}} $
The expression is similar to the one for finding the domain, so the range of ${x^2} + {y^2} = 9$ is $[ - 3,3]$ .
Hence, the domain and the range of ${x^2} + {y^2} = 9$ is $[ - 3,3]$
Note: For solving this kind of question, we must know the concept of the domain and range of function clearly. We are given the equation of a circle. The equation of the circle having centre at the origin is given as ${x^2} + {y^2} = {r^2}$ , where r is the radius of the circle, so the radius of the given circle is 3 units. Thus, the maximum values that x and y can take are -3 and 3. So the domain and the range of the function ${x^2} + {y^2} = 9$ is $[ - 3,3]$.
Complete step-by-step solution:
We are given that ${x^2} + {y^2} = 9$
We can rewrite it as –
\[y = \sqrt {9 - {x^2}} \]
For y to exist,
$
9 - {x^2} \geqslant 0 \\
\Rightarrow 9 \geqslant {x^2} \\
\Rightarrow {x^2} \leqslant 9 \\
$
Now square rooting both sides and then using the law of inequalities, we get –
$x \geqslant - 3,\,x \leqslant 3$
So, the domain of ${x^2} + {y^2} = 9$ is $[ - 3,3]$
To find the range, we will express x in terms of y –
$x = \sqrt {9 = {y^2}} $
The expression is similar to the one for finding the domain, so the range of ${x^2} + {y^2} = 9$ is $[ - 3,3]$ .
Hence, the domain and the range of ${x^2} + {y^2} = 9$ is $[ - 3,3]$
Note: For solving this kind of question, we must know the concept of the domain and range of function clearly. We are given the equation of a circle. The equation of the circle having centre at the origin is given as ${x^2} + {y^2} = {r^2}$ , where r is the radius of the circle, so the radius of the given circle is 3 units. Thus, the maximum values that x and y can take are -3 and 3. So the domain and the range of the function ${x^2} + {y^2} = 9$ is $[ - 3,3]$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE