
Find the distance between the point (7, 2, 4) and the plane determined by the points A (2, 5, -3), B (-2, -3, 5) and C (5, 3, -3).
Answer
597k+ views
Hint: We have been given three points. So firstly we will find the equation of plane by using the formula as follows:
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

