
Find the distance between the point (7, 2, 4) and the plane determined by the points A (2, 5, -3), B (-2, -3, 5) and C (5, 3, -3).
Answer
534k+ views
Hint: We have been given three points. So firstly we will find the equation of plane by using the formula as follows:
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
