
Find the distance between the point (7, 2, 4) and the plane determined by the points A (2, 5, -3), B (-2, -3, 5) and C (5, 3, -3).
Answer
611.4k+ views
Hint: We have been given three points. So firstly we will find the equation of plane by using the formula as follows:
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Let us consider three points as \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\].
Complete step-by-step answer:
Then, then equation of plane is \[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
Also, we will use the formula of distance between a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] and the plane \[Ax+By+Cz=D\] is as follows:
Distance \[=\left| \dfrac{A{{x}_{1}}+B{{y}_{1}}+C{{z}_{1}}-D}{\sqrt{{{A}^{2}}+{{B}^{2}}+{{C}^{2}}}} \right|\].
We have been given three points \[A\left( 2,5,-3 \right),B\left( -2,-3,5 \right),C\left( 5,3,-3 \right)\].
We know that the equation of a plane having point \[A\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right),C\left( {{x}_{3}},{{y}_{3}},{{z}_{3}} \right)\] is given as follows:
\[\left| \begin{matrix}
x-{{x}_{1}} & y-{{y}_{1}} & z-{{z}_{1}} \\
{{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} & {{z}_{2}}-{{z}_{1}} \\
{{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} & {{z}_{3}}-{{z}_{1}} \\
\end{matrix} \right|=0\]
After using the above formula to find the equation of a plane, we get as follows:
\[\begin{align}
& \left| \begin{matrix}
x-2 & y-5 & z-(-3) \\
-2-2 & -3-5 & 5-(-3) \\
5-2 & 3-5 & -3-(-3) \\
\end{matrix} \right|=0 \\
& \left| \begin{matrix}
x-2 & y-5 & z+3 \\
-4 & -8 & 8 \\
3 & -2 & 0 \\
\end{matrix} \right|=0 \\
& \Rightarrow \left( x-2 \right)\left( -8\times 0-(-2)\times 8 \right)-(y-5)(-4\times 0-3\times 8)+(z+3)(-4\times -2(-8\times 3)=0 \\
&\Rightarrow (x-2)(16)-(y-5)(-24)+(z+3)(8+24)=0 \\
& \Rightarrow 16x-32+24y-120+32z+96=0 \\
& \Rightarrow 16x+24y+32z-32-120+96=0 \\
& \Rightarrow 16x+24y+32z-56=0 \\
\end{align}\]
Taking 8 as common, we get as follows:
\[\begin{align}
& 8\left( 2x+3y+4z-7 \right)=0 \\
& 2x+3y+4z-7=0 \\
\end{align}\]
Hence the equation of the plane is \[2x+3y+4z-7=0\].
We know that the distance of a point \[\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)\] from plane \[ax+by+cz+d=0\] is given as,
\[d=\left| \dfrac{a{{x}_{1}}+b{{y}_{1}}+c{{z}_{1}}+d}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}} \right|\]
So we have been given the point (7, 2, 4).
Equation of the plane is \[2x+3y+4z-7=0\].
\[d=\left| \dfrac{2\times 7+3\times 2+4\times 4-7}{\sqrt{{{2}^{2}}+{{3}^{2}}+{{4}^{2}}}} \right|=\left| \dfrac{14+6+16-7}{\sqrt{4+9+16}} \right|=\left| \dfrac{29}{\sqrt{29}} \right|\]
On rationalizing the above equation, we get as follows:
\[d=\dfrac{29}{\sqrt{29}}\times \dfrac{\sqrt{29}}{\sqrt{29}}=\dfrac{29\times \sqrt{29}}{29}=\sqrt{29}\]
Therefore, the distance between the point and the plane is \[\sqrt{29}\] units.
Note: We can also use the formula \[a\left( x-{{x}_{1}} \right)+b\left( y-{{y}_{1}} \right)+c\left( z-{{z}_{1}} \right)=0\] to find the equation of the plane and calculate the value of a, b and c by substituting other two points. Be careful while substituting values in the determinant and also while solving it as there is a chance of sign and calculation mistake.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

