
Find the differential equation of the family of all straight lines passing through the origin.
Answer
607.2k+ views
Hint: First of all, write the equation of the line passing through the origin by using formula \[\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)\]. Then differentiate both sides with respect to x and finally substitute the value of m in it.
Complete step-by-step answer:
Here, we have to find the differential equation of the family of all straight lines passing through the origin. We know that to find the differential equation of the family of curves, we have to find the equation of the curve first. So, now we will find the equation of the line passing through the origin.
We know that the equation of the line of slope m and passing through points \[\left( {{x}_{1}},{{y}_{1}} \right)\] is written as
\[\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)\]
So, by substituting \[{{y}_{1}}=0\] and \[{{x}_{1}}=0\], we get the equation of the line passing through the origin as,
\[\left( y-0 \right)=m\left( x-0 \right)\]
Or \[y=mx....\left( i \right)\]
By dividing m on both the sides, we get
\[\dfrac{y}{x}=m....\left( ii \right)\]
We know that according to the product rule of differentiation, \[\dfrac{d}{dx}\left( f.g \right)=g\left( \dfrac{df}{dx} \right)+f.\left( \dfrac{dy}{dx} \right)\]
So, by differentiating both sides of equation (i) with respect to x, we get,
\[\dfrac{dy}{dx}=m\left( \dfrac{dx}{dy} \right)+x\left( \dfrac{dm}{dx} \right)\]
We know that m is constant for a particular value of x and y, so \[\dfrac{dm}{dx}=0\]. So, we get,
\[\dfrac{dy}{dx}=m\left( 1 \right)+x\left( 0 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=m\]
By substituting the value of m from equation (ii), we get,
\[\dfrac{dy}{dx}=\dfrac{y}{x}\]
By subtracting \[\dfrac{y}{x}\] from both sides of the above equation, we get,
\[\dfrac{dy}{dx}-\dfrac{y}{x}=0\]
By multiplying x dx on both the sides of the above equation, we get,
\[x\text{ }dy-y\text{ }dx=0\]
So, we get the differential equation of the family of all straight lines passing through the origin as
\[x\text{ }dy-y\text{ }dx=0\]
Note:
Students must note that to find the differential equation of any curve, they must eliminate all the constants from the equation like we eliminated ‘m’ in the above solution. Also, students can verify this differential equation by substituting the value of \[\dfrac{dy}{dx}\] in the differential equation and checking if the original equation of the curve is obtained or not.
Complete step-by-step answer:
Here, we have to find the differential equation of the family of all straight lines passing through the origin. We know that to find the differential equation of the family of curves, we have to find the equation of the curve first. So, now we will find the equation of the line passing through the origin.
We know that the equation of the line of slope m and passing through points \[\left( {{x}_{1}},{{y}_{1}} \right)\] is written as
\[\left( y-{{y}_{1}} \right)=m\left( x-{{x}_{1}} \right)\]
So, by substituting \[{{y}_{1}}=0\] and \[{{x}_{1}}=0\], we get the equation of the line passing through the origin as,
\[\left( y-0 \right)=m\left( x-0 \right)\]
Or \[y=mx....\left( i \right)\]
By dividing m on both the sides, we get
\[\dfrac{y}{x}=m....\left( ii \right)\]
We know that according to the product rule of differentiation, \[\dfrac{d}{dx}\left( f.g \right)=g\left( \dfrac{df}{dx} \right)+f.\left( \dfrac{dy}{dx} \right)\]
So, by differentiating both sides of equation (i) with respect to x, we get,
\[\dfrac{dy}{dx}=m\left( \dfrac{dx}{dy} \right)+x\left( \dfrac{dm}{dx} \right)\]
We know that m is constant for a particular value of x and y, so \[\dfrac{dm}{dx}=0\]. So, we get,
\[\dfrac{dy}{dx}=m\left( 1 \right)+x\left( 0 \right)\]
\[\Rightarrow \dfrac{dy}{dx}=m\]
By substituting the value of m from equation (ii), we get,
\[\dfrac{dy}{dx}=\dfrac{y}{x}\]
By subtracting \[\dfrac{y}{x}\] from both sides of the above equation, we get,
\[\dfrac{dy}{dx}-\dfrac{y}{x}=0\]
By multiplying x dx on both the sides of the above equation, we get,
\[x\text{ }dy-y\text{ }dx=0\]
So, we get the differential equation of the family of all straight lines passing through the origin as
\[x\text{ }dy-y\text{ }dx=0\]
Note:
Students must note that to find the differential equation of any curve, they must eliminate all the constants from the equation like we eliminated ‘m’ in the above solution. Also, students can verify this differential equation by substituting the value of \[\dfrac{dy}{dx}\] in the differential equation and checking if the original equation of the curve is obtained or not.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

