
Find the differential coefficient of the function $ {{x}^{2}}.\log x.\sin x $ with respect to $ x $ .
Answer
578.4k+ views
Hint: Differential coefficient of a function is nothing but the derivative of that function with respect to a given variable. So in order to solve this question we have to find the derivative of a given function with respect to $ x $ . In order to find the derivative of the given function we have to apply product rule of the derivative, given by $ {{F}^{'}}(x)=\dfrac{d}{dx}(f(x)).g(x)+f(x).\dfrac{d}{dx}(g(x)) $ , where F(x)=f(x).g(x)
Complete step-by-step answer:
Let us consider that $ h(x)={{x}^{2}}.\log x.\sin x $
So, the differential coefficient of the function $ {{x}^{2}}.\log x.\sin x $ with respect to $ x $ is equal to getting derivative of $ h(x) $ w.r.t to $ x $ .
Here, $ h(x) $ is a multiplication of three functions $ {{x}^{2}},\log x $ and $ \sin x $ . So, whenever more than one function is multiplied with each other we use product rule to get the derivative.
According to product rule of derivative,
If $ F(x)=f(x).g(x) $
Then, $ {{F}^{'}}(x)=\dfrac{d}{dx}(f(x)).g(x)+f(x).\dfrac{d}{dx}(g(x)) $
Similarly this can be extended for the product of three functions too, which is
If $ F(x)=f(x).g(x).m(x) $
Then, $ {{F}^{'}}(x)=\dfrac{d}{dx}(f(x)).g(x).m(x)+f(x).\dfrac{d}{dx}(g(x)).m(x)+f(x).g(x).\dfrac{d}{dx}(m(x)) $
So now, we have $ h(x)={{x}^{2}}.\log x.\sin x $
Applying product rule, we get
$ \Rightarrow {{h}^{'}}(x)=\dfrac{d}{dx}({{x}^{2}}).\log x.\sin x+{{x}^{2}}.\dfrac{d}{dx}(\log x).\sin x+{{x}^{2}}.\log x.\dfrac{d}{dx}(\sin x)\ldots \ldots \text{ }\left( 1 \right) $
Now, we know that the derivative of $ {{x}^{n}} $ is $ n{{x}^{n-1}} $ , as
$ \therefore \dfrac{d}{dx}({{x}^{n}})=n.{{x}^{n-1}}\Rightarrow \dfrac{d}{dx}({{x}^{2}})=2.{{x}^{2-1}}=2x $
We also know that derivative of $ \log x $ and $ \sin x $ is $ \dfrac{1}{x} $ and $ \cos x $ respectively, as
$ \therefore \dfrac{d}{dx}(\log x)=\dfrac{1}{x} $ and $ \dfrac{d}{dx}(\sin x)=\cos x $
Putting all these values in equation (1), we get
$ \Rightarrow {{h}^{'}}(x)=2x.\log x.\sin x+{{x}^{2}}.\dfrac{1}{x}.\sin x+{{x}^{2}}.\log x.\cos x $
After simplifying the above equation, we get
$ \Rightarrow {{h}^{'}}(x)=2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $
And so the differential coefficient of the function $ {{x}^{2}}.\log x.\sin x $ with respect to $ x $ is $ 2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $
Hence, the answer is $ 2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $ .
Note: This is a pretty straight forward question as there is nothing tricky in this question. One thing that students find confusing is the differential coefficient of the function which is nothing but the derivative of the function. After figuring this thing out then we have to find the derivative of the function in order to get the derivative of the function.
Complete step-by-step answer:
Let us consider that $ h(x)={{x}^{2}}.\log x.\sin x $
So, the differential coefficient of the function $ {{x}^{2}}.\log x.\sin x $ with respect to $ x $ is equal to getting derivative of $ h(x) $ w.r.t to $ x $ .
Here, $ h(x) $ is a multiplication of three functions $ {{x}^{2}},\log x $ and $ \sin x $ . So, whenever more than one function is multiplied with each other we use product rule to get the derivative.
According to product rule of derivative,
If $ F(x)=f(x).g(x) $
Then, $ {{F}^{'}}(x)=\dfrac{d}{dx}(f(x)).g(x)+f(x).\dfrac{d}{dx}(g(x)) $
Similarly this can be extended for the product of three functions too, which is
If $ F(x)=f(x).g(x).m(x) $
Then, $ {{F}^{'}}(x)=\dfrac{d}{dx}(f(x)).g(x).m(x)+f(x).\dfrac{d}{dx}(g(x)).m(x)+f(x).g(x).\dfrac{d}{dx}(m(x)) $
So now, we have $ h(x)={{x}^{2}}.\log x.\sin x $
Applying product rule, we get
$ \Rightarrow {{h}^{'}}(x)=\dfrac{d}{dx}({{x}^{2}}).\log x.\sin x+{{x}^{2}}.\dfrac{d}{dx}(\log x).\sin x+{{x}^{2}}.\log x.\dfrac{d}{dx}(\sin x)\ldots \ldots \text{ }\left( 1 \right) $
Now, we know that the derivative of $ {{x}^{n}} $ is $ n{{x}^{n-1}} $ , as
$ \therefore \dfrac{d}{dx}({{x}^{n}})=n.{{x}^{n-1}}\Rightarrow \dfrac{d}{dx}({{x}^{2}})=2.{{x}^{2-1}}=2x $
We also know that derivative of $ \log x $ and $ \sin x $ is $ \dfrac{1}{x} $ and $ \cos x $ respectively, as
$ \therefore \dfrac{d}{dx}(\log x)=\dfrac{1}{x} $ and $ \dfrac{d}{dx}(\sin x)=\cos x $
Putting all these values in equation (1), we get
$ \Rightarrow {{h}^{'}}(x)=2x.\log x.\sin x+{{x}^{2}}.\dfrac{1}{x}.\sin x+{{x}^{2}}.\log x.\cos x $
After simplifying the above equation, we get
$ \Rightarrow {{h}^{'}}(x)=2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $
And so the differential coefficient of the function $ {{x}^{2}}.\log x.\sin x $ with respect to $ x $ is $ 2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $
Hence, the answer is $ 2x.\log x.\sin x+x.\sin x+{{x}^{2}}.\log x.\cos x $ .
Note: This is a pretty straight forward question as there is nothing tricky in this question. One thing that students find confusing is the differential coefficient of the function which is nothing but the derivative of the function. After figuring this thing out then we have to find the derivative of the function in order to get the derivative of the function.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

