
How do you find the derivative of $y = {e^{\cosh \left( {2x} \right)}}$?
Answer
531.3k+ views
Hint: First find the differentiation of $2x$ with respect to $x$. Then, find the differentiation of $\cosh \left( {2x} \right)$ with respect to $2x$. Then, find the differentiation of ${e^{\cosh \left( {2x} \right)}}$ with respect to $\cosh \left( {2x} \right)$. Multiply these and use chain rule to get the required derivative.
Complete step by step solution:
We have to find the derivative of $y = {e^{\cosh \left( {2x} \right)}}$.
Here, $f\left( x \right) = {e^{g\left( x \right)}}$, where $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$ and $h\left( x \right) = 2x$.
We have to find the differentiation of $f$ with respect to $x$.
It can be done using Chain Rule.
$\dfrac{{df}}{{dx}} = \dfrac{{df}}{{dg}} \times \dfrac{{dg}}{{dh}} \times \dfrac{{dh}}{{dx}}$……(1)
i.e., Differentiation of $f$ with respect to $x$ is equal to product of differentiation of $f$ with respect to $g$, and differentiation of $g$ with respect to $h$, and differentiation of $h$ with respect to $x$.
We will first find the differentiation of $h$ with respect to $x$.
Here, $h\left( x \right) = 2x$
Differentiating $h$ with respect to $x$.
$\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {2x} \right)$
Now, using the property that the differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
So, in above differentiation, constant $2$ can be taken outside the differentiation.
$ \Rightarrow \dfrac{{dh}}{{dx}} = 2\dfrac{d}{{dx}}\left( x \right)$
Now, using the differentiation formula $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$ in above differentiation, we get
$ \Rightarrow \dfrac{{dh}}{{dx}} = 2$……(2)
Now, we will find the differentiation of$g$ with respect to $h$.
Here, $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$
Differentiating$g$ with respect to $h$.
$\dfrac{{dg}}{{dh}} = \dfrac{d}{{dh}}\left( {\cosh \left( {h\left( x \right)} \right)} \right)$
The derivative of the cosh function is $\dfrac{d}{{dx}}\left( {\cosh x} \right) = \sinh x$.
$ \Rightarrow \dfrac{{dg}}{{dh}} = \sinh \left( {h\left( x \right)} \right)$
Put the value of $h\left( x \right)$ in the above equation.
Since, $h\left( x \right) = 2x$
So, $\dfrac{{dg}}{{dh}} = \sinh \left( {2x} \right)$……(3)
Now, we will find the differentiation of$f$ with respect to $g$.
Here, $f\left( x \right) = {e^{g\left( x \right)}}$
Differentiating$f$ with respect to $g$.
$\dfrac{{df}}{{dg}} = \dfrac{d}{{dg}}\left( {{e^{g\left( x \right)}}} \right)$
The derivative of exponential function is $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$.
$ \Rightarrow \dfrac{{df}}{{dg}} = {e^{g\left( x \right)}}$
Put the value of $g\left( x \right)$ in the above equation.
Since, $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$ and $h\left( x \right) = 2x$
So, $\dfrac{{df}}{{dg}} = {e^{\cosh \left( {2x} \right)}}$…….(4)
Put the value of $\dfrac{{df}}{{dg}},\dfrac{{dg}}{{dh}},\dfrac{{dh}}{{dx}}$ from Equation (2), (3) and (4) in Equation (1).
$\dfrac{{df}}{{dx}} = {e^{\cosh \left( {2x} \right)}} \times \sinh \left( {2x} \right) \times 2$
Multiplying the terms, we get
$ \Rightarrow \dfrac{{df}}{{dx}} = 2\sinh \left( {2x} \right){e^{\cosh \left( {2x} \right)}}$
Therefore, the derivative of $y = {e^{\cosh \left( {2x} \right)}}$ is $y' = 2\sinh \left( {2x} \right){e^{\cosh \left( {2x} \right)}}$.
Note: Chain rule, in calculus, basic method for differentiating a composite function. If $f\left( x \right)$ and $g\left( x \right)$ are two functions, the function $f\left( {g\left( x \right)} \right)$ is calculated for a value of $x$ by first evaluating $g\left( x \right)$ and then evaluating the function $f$ at this value of $g\left( x \right)$, thus “chaining” the results together.
Complete step by step solution:
We have to find the derivative of $y = {e^{\cosh \left( {2x} \right)}}$.
Here, $f\left( x \right) = {e^{g\left( x \right)}}$, where $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$ and $h\left( x \right) = 2x$.
We have to find the differentiation of $f$ with respect to $x$.
It can be done using Chain Rule.
$\dfrac{{df}}{{dx}} = \dfrac{{df}}{{dg}} \times \dfrac{{dg}}{{dh}} \times \dfrac{{dh}}{{dx}}$……(1)
i.e., Differentiation of $f$ with respect to $x$ is equal to product of differentiation of $f$ with respect to $g$, and differentiation of $g$ with respect to $h$, and differentiation of $h$ with respect to $x$.
We will first find the differentiation of $h$ with respect to $x$.
Here, $h\left( x \right) = 2x$
Differentiating $h$ with respect to $x$.
$\dfrac{{dh}}{{dx}} = \dfrac{d}{{dx}}\left( {2x} \right)$
Now, using the property that the differentiation of the product of a constant and a function = the constant $ \times $ differentiation of the function.
i.e., $\dfrac{d}{{dx}}\left( {kf\left( x \right)} \right) = k\dfrac{d}{{dx}}\left( {f\left( x \right)} \right)$, where $k$ is a constant.
So, in above differentiation, constant $2$ can be taken outside the differentiation.
$ \Rightarrow \dfrac{{dh}}{{dx}} = 2\dfrac{d}{{dx}}\left( x \right)$
Now, using the differentiation formula $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}},n \ne - 1$ in above differentiation, we get
$ \Rightarrow \dfrac{{dh}}{{dx}} = 2$……(2)
Now, we will find the differentiation of$g$ with respect to $h$.
Here, $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$
Differentiating$g$ with respect to $h$.
$\dfrac{{dg}}{{dh}} = \dfrac{d}{{dh}}\left( {\cosh \left( {h\left( x \right)} \right)} \right)$
The derivative of the cosh function is $\dfrac{d}{{dx}}\left( {\cosh x} \right) = \sinh x$.
$ \Rightarrow \dfrac{{dg}}{{dh}} = \sinh \left( {h\left( x \right)} \right)$
Put the value of $h\left( x \right)$ in the above equation.
Since, $h\left( x \right) = 2x$
So, $\dfrac{{dg}}{{dh}} = \sinh \left( {2x} \right)$……(3)
Now, we will find the differentiation of$f$ with respect to $g$.
Here, $f\left( x \right) = {e^{g\left( x \right)}}$
Differentiating$f$ with respect to $g$.
$\dfrac{{df}}{{dg}} = \dfrac{d}{{dg}}\left( {{e^{g\left( x \right)}}} \right)$
The derivative of exponential function is $\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}$.
$ \Rightarrow \dfrac{{df}}{{dg}} = {e^{g\left( x \right)}}$
Put the value of $g\left( x \right)$ in the above equation.
Since, $g\left( x \right) = \cosh \left( {h\left( x \right)} \right)$ and $h\left( x \right) = 2x$
So, $\dfrac{{df}}{{dg}} = {e^{\cosh \left( {2x} \right)}}$…….(4)
Put the value of $\dfrac{{df}}{{dg}},\dfrac{{dg}}{{dh}},\dfrac{{dh}}{{dx}}$ from Equation (2), (3) and (4) in Equation (1).
$\dfrac{{df}}{{dx}} = {e^{\cosh \left( {2x} \right)}} \times \sinh \left( {2x} \right) \times 2$
Multiplying the terms, we get
$ \Rightarrow \dfrac{{df}}{{dx}} = 2\sinh \left( {2x} \right){e^{\cosh \left( {2x} \right)}}$
Therefore, the derivative of $y = {e^{\cosh \left( {2x} \right)}}$ is $y' = 2\sinh \left( {2x} \right){e^{\cosh \left( {2x} \right)}}$.
Note: Chain rule, in calculus, basic method for differentiating a composite function. If $f\left( x \right)$ and $g\left( x \right)$ are two functions, the function $f\left( {g\left( x \right)} \right)$ is calculated for a value of $x$ by first evaluating $g\left( x \right)$ and then evaluating the function $f$ at this value of $g\left( x \right)$, thus “chaining” the results together.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

