
Find the derivative of the following function: \[\sec x\]
Answer
596.7k+ views
Hint: To find the derivative of the given function, we will simplify the given function in terms of fractions using trigonometric relations and then find the derivative using quotient rule of differentiation.
We have the function \[y=\sec x\]. We have to find the first derivative of the given function.
Thus, we will differentiate the given function with respect to the variable \[x\].
We can rewrite \[y=\sec x\] in terms of \[\cos x\] as \[y=\sec x=\dfrac{1}{\cos x}\].
We will now use quotient rule to find the derivative of the given function which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\], then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
We have to evaluate \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)\].
Thus, substituting \[f\left( x \right)=1,g\left( x \right)=\cos x\] in the quotient rule of differentiation, we get \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}\]. \[...\left( 1 \right)\]
We know that differentiation of a constant is zero with respect to any variable. Thus, we have\[\dfrac{d}{dx}\left( 1 \right)=0\]. \[...\left( 2 \right)\]
We also know that differentiation of function of the form \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\]. \[...\left( 3 \right)\]
Substituting the value of equation \[\left( 2 \right), \left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}=\dfrac{\cos x\times 0-1\times \left( -\sin x \right)}{{{\cos }^{2}}x}=\dfrac{\sin x}{{{\cos }^{2}}x}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\]. Thus, we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{\tan x}{\cos x}=\tan x\sec x\].
Hence, the derivative of the function \[y=\sec x\] is \[\dfrac{dy}{dx}\left( \sec x \right)=\tan x\sec x\].
The derivative of any function \[y=f\left( x \right)\] with respect to variable \[x\] is a measure of the rate at which the value of the function changes with respect to the change in the value of variable \[x\]. The first derivative of any function also signifies the slope of the function when the graph of \[y=f\left( x \right)\] is plotted against \[x\] considering only real values of the function.
Note: It’s necessary to use quotient rules to find the derivative of the given function. We can also use the basic formula for finding the derivative of any function using limit.
We have the function \[y=\sec x\]. We have to find the first derivative of the given function.
Thus, we will differentiate the given function with respect to the variable \[x\].
We can rewrite \[y=\sec x\] in terms of \[\cos x\] as \[y=\sec x=\dfrac{1}{\cos x}\].
We will now use quotient rule to find the derivative of the given function which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\], then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].
We have to evaluate \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)\].
Thus, substituting \[f\left( x \right)=1,g\left( x \right)=\cos x\] in the quotient rule of differentiation, we get \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}\]. \[...\left( 1 \right)\]
We know that differentiation of a constant is zero with respect to any variable. Thus, we have\[\dfrac{d}{dx}\left( 1 \right)=0\]. \[...\left( 2 \right)\]
We also know that differentiation of function of the form \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\]. \[...\left( 3 \right)\]
Substituting the value of equation \[\left( 2 \right), \left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}=\dfrac{\cos x\times 0-1\times \left( -\sin x \right)}{{{\cos }^{2}}x}=\dfrac{\sin x}{{{\cos }^{2}}x}\].
We know that \[\dfrac{\sin x}{\cos x}=\tan x\]. Thus, we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{\tan x}{\cos x}=\tan x\sec x\].
Hence, the derivative of the function \[y=\sec x\] is \[\dfrac{dy}{dx}\left( \sec x \right)=\tan x\sec x\].
The derivative of any function \[y=f\left( x \right)\] with respect to variable \[x\] is a measure of the rate at which the value of the function changes with respect to the change in the value of variable \[x\]. The first derivative of any function also signifies the slope of the function when the graph of \[y=f\left( x \right)\] is plotted against \[x\] considering only real values of the function.
Note: It’s necessary to use quotient rules to find the derivative of the given function. We can also use the basic formula for finding the derivative of any function using limit.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

