# Find the derivative of the following function: \[\sec x\]

Answer

Verified

364.8k+ views

Hint: To find the derivative of the given function, we will simplify the given function in terms of fractions using trigonometric relations and then find the derivative using quotient rule of differentiation.

We have the function \[y=\sec x\]. We have to find the first derivative of the given function.

Thus, we will differentiate the given function with respect to the variable \[x\].

We can rewrite \[y=\sec x\] in terms of \[\cos x\] as \[y=\sec x=\dfrac{1}{\cos x}\].

We will now use quotient rule to find the derivative of the given function which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\], then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].

We have to evaluate \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)\].

Thus, substituting \[f\left( x \right)=1,g\left( x \right)=\cos x\] in the quotient rule of differentiation, we get \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}\]. \[...\left( 1 \right)\]

We know that differentiation of a constant is zero with respect to any variable. Thus, we have\[\dfrac{d}{dx}\left( 1 \right)=0\]. \[...\left( 2 \right)\]

We also know that differentiation of function of the form \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\]. \[...\left( 3 \right)\]

Substituting the value of equation \[\left( 2 \right), \left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}=\dfrac{\cos x\times 0-1\times \left( -\sin x \right)}{{{\cos }^{2}}x}=\dfrac{\sin x}{{{\cos }^{2}}x}\].

We know that \[\dfrac{\sin x}{\cos x}=\tan x\]. Thus, we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{\tan x}{\cos x}=\tan x\sec x\].

Hence, the derivative of the function \[y=\sec x\] is \[\dfrac{dy}{dx}\left( \sec x \right)=\tan x\sec x\].

The derivative of any function \[y=f\left( x \right)\] with respect to variable \[x\] is a measure of the rate at which the value of the function changes with respect to the change in the value of variable \[x\]. The first derivative of any function also signifies the slope of the function when the graph of \[y=f\left( x \right)\] is plotted against \[x\] considering only real values of the function.

Note: It’s necessary to use quotient rules to find the derivative of the given function. We can also use the basic formula for finding the derivative of any function using limit.

We have the function \[y=\sec x\]. We have to find the first derivative of the given function.

Thus, we will differentiate the given function with respect to the variable \[x\].

We can rewrite \[y=\sec x\] in terms of \[\cos x\] as \[y=\sec x=\dfrac{1}{\cos x}\].

We will now use quotient rule to find the derivative of the given function which states that if \[y=\dfrac{f\left( x \right)}{g\left( x \right)}\], then we have \[\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}\].

We have to evaluate \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)\].

Thus, substituting \[f\left( x \right)=1,g\left( x \right)=\cos x\] in the quotient rule of differentiation, we get \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{dy}{dx}\left( \dfrac{1}{\cos x} \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}\]. \[...\left( 1 \right)\]

We know that differentiation of a constant is zero with respect to any variable. Thus, we have\[\dfrac{d}{dx}\left( 1 \right)=0\]. \[...\left( 2 \right)\]

We also know that differentiation of function of the form \[y=\cos x\] is \[\dfrac{dy}{dx}=-\sin x\]. \[...\left( 3 \right)\]

Substituting the value of equation \[\left( 2 \right), \left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\cos x\times \dfrac{d}{dx}\left( 1 \right)-1\times \dfrac{d}{dx}\left( \cos x \right)}{{{\left( \cos x \right)}^{2}}}=\dfrac{\cos x\times 0-1\times \left( -\sin x \right)}{{{\cos }^{2}}x}=\dfrac{\sin x}{{{\cos }^{2}}x}\].

We know that \[\dfrac{\sin x}{\cos x}=\tan x\]. Thus, we have \[\dfrac{dy}{dx}\left( \sec x \right)=\dfrac{\sin x}{{{\cos }^{2}}x}=\dfrac{\tan x}{\cos x}=\tan x\sec x\].

Hence, the derivative of the function \[y=\sec x\] is \[\dfrac{dy}{dx}\left( \sec x \right)=\tan x\sec x\].

The derivative of any function \[y=f\left( x \right)\] with respect to variable \[x\] is a measure of the rate at which the value of the function changes with respect to the change in the value of variable \[x\]. The first derivative of any function also signifies the slope of the function when the graph of \[y=f\left( x \right)\] is plotted against \[x\] considering only real values of the function.

Note: It’s necessary to use quotient rules to find the derivative of the given function. We can also use the basic formula for finding the derivative of any function using limit.

Last updated date: 30th Sep 2023

•

Total views: 364.8k

•

Views today: 7.64k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE