Answer
Verified
464.4k+ views
Hint: For this question, we will directly use the formula of first derivative principle to find the derivative. The formula is given below as: \[f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]. So, use this concept to reach the solution of the given problem.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths