
Find the derivative of \[\tan x\] using the first derivative principle of derivatives.
Answer
578.4k+ views
Hint: For this question, we will directly use the formula of first derivative principle to find the derivative. The formula is given below as: \[f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f\left( {x + h} \right) - f\left( x \right)}}{h}\]. So, use this concept to reach the solution of the given problem.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Complete step by step answer:
We have to find out the derivative of \[\tan x\]. So, our function will be \[f\left( x \right) = \tan x\].
According to the first derivative principle, we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\tan \left( {x + h} \right) - \tan x}}{h} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\dfrac{{\sin \left( {x + h} \right)}}{{\cos \left( {x + h} \right)}} - \dfrac{{\sin x}}{{\cos x}}}}{h}{\text{ }}\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}} \right] \\
\]
Taking LCM and simplifying further, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h} \right)\cos x - \cos \left( {x + h} \right)\sin x}}{{h\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\sin A\cos B - \cos A\sin B = \sin \left( {A - B} \right)\], we have
\[
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( {x + h - x} \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{{h\cos x\cos \left( {x + h} \right)}} \\
\]
Splitting the limits, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\sin \left( h \right)}}{h} \times \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
By using the formula, \[\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1\], we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{1}{{\cos x\cos \left( {x + h} \right)}}\]
We know that for \[h \to 0\] we have \[\cos \left( {x + h} \right) \simeq \cos x\]
\[
\Rightarrow f'\left( x \right) = \dfrac{1}{{\cos x\cos x}} \\
\Rightarrow f'\left( x \right) = \dfrac{1}{{{{\cos }^2}x}} \\
\therefore f'\left( x \right) = {\sec ^2}x\,{\text{ }}\left[ {\because \sec x = \dfrac{1}{{\cos x}}} \right] \\
\]
Thus, the derivative of \[\tan x\] using the first derivative principle is \[{\sec ^2}x\].
Note: Using the first derivative method, it consumes much time. And for smaller functions, we can find out the derivative using the first derivative method. But if the function is complex, then it is too difficult to solve using this method. Then we follow conventional methods for finding the derivative.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

