
How to find the derivative of \[\sqrt x + \sqrt y = 1\] by using the implicit differentiation?
Answer
538.5k+ views
Hint:
Here we will differentiate the given equation to solve the question. First, we will write the equation in the exponent form of the variables. Then we will differentiate the equation and after differentiating we will modify the equation to get the value of \[\dfrac{{dy}}{{dx}}\].
Complete step by step solution:
The given equation is \[\sqrt x + \sqrt y = 1\].
First, we will write the given equation in the exponent form of the variables. Therefore we can write the given equation as
\[ \Rightarrow {x^{\dfrac{1}{2}}} + {y^{\dfrac{1}{2}}} = 1\]
Now we will simply differentiate the above equation to get the value of \[\dfrac{{dy}}{{dx}}\]. Therefore, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}} + {y^{\dfrac{1}{2}}}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\]
We know that the differentiation of any constant value is equal to zero. Therefore, we get
\[ \Rightarrow \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}} + \dfrac{1}{2}{y^{\dfrac{1}{2} - 1}} \cdot \dfrac{{dy}}{{dx}} = 0\]
Now we will simplify and solve the above equation, we get
\[ \Rightarrow \dfrac{1}{2}{x^{ - \dfrac{1}{2}}} + \dfrac{1}{2}{y^{ - \dfrac{1}{2}}} \cdot \dfrac{{dy}}{{dx}} = 0\]
We know that we can write \[{x^{ - \dfrac{1}{2}}}\] as \[\dfrac{1}{{\sqrt x }}\] and \[{y^{ - \dfrac{1}{2}}}\] as \[\dfrac{1}{{\sqrt y }}\]. Therefore putting these values in the equation we get
\[ \Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }} \cdot \dfrac{{dy}}{{dx}} = 0\]
Now we will modify the above equation to get the value of \[\dfrac{{dy}}{{dx}}\]. Therefore, we get
\[ \Rightarrow \dfrac{1}{{2\sqrt y }} \cdot \dfrac{{dy}}{{dx}} = - \dfrac{1}{{2\sqrt x }}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{2\sqrt y }}{{2\sqrt x }}\]
Now we will cancel out the common terms in the numerator and the denominator. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }}\]
Hence the derivative of \[\sqrt x + \sqrt y = 1\] by using the implicit differentiation is equal to \[\dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }}\].
Note:
A differentiable function may be defined as is a function whose derivative exists at every point in its range of domain. We should remember that a differentiable function is always continuous but the converse is not true which means a function may be continuous but not always differentiable. In this type of question we should simplify the equation in terms of the values given in the question.
We should know the basic formula of the differentiation of the \[uv\] and the formula of the differentiation of the \[\dfrac{u}{v}\],
\[\begin{array}{l}
\dfrac{d}{{dx}}\left( {uv} \right) = uv' + u'v\\
\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}
\end{array}\]
Here we will differentiate the given equation to solve the question. First, we will write the equation in the exponent form of the variables. Then we will differentiate the equation and after differentiating we will modify the equation to get the value of \[\dfrac{{dy}}{{dx}}\].
Complete step by step solution:
The given equation is \[\sqrt x + \sqrt y = 1\].
First, we will write the given equation in the exponent form of the variables. Therefore we can write the given equation as
\[ \Rightarrow {x^{\dfrac{1}{2}}} + {y^{\dfrac{1}{2}}} = 1\]
Now we will simply differentiate the above equation to get the value of \[\dfrac{{dy}}{{dx}}\]. Therefore, we get
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^{\dfrac{1}{2}}} + {y^{\dfrac{1}{2}}}} \right) = \dfrac{d}{{dx}}\left( 1 \right)\]
We know that the differentiation of any constant value is equal to zero. Therefore, we get
\[ \Rightarrow \dfrac{1}{2}{x^{\dfrac{1}{2} - 1}} + \dfrac{1}{2}{y^{\dfrac{1}{2} - 1}} \cdot \dfrac{{dy}}{{dx}} = 0\]
Now we will simplify and solve the above equation, we get
\[ \Rightarrow \dfrac{1}{2}{x^{ - \dfrac{1}{2}}} + \dfrac{1}{2}{y^{ - \dfrac{1}{2}}} \cdot \dfrac{{dy}}{{dx}} = 0\]
We know that we can write \[{x^{ - \dfrac{1}{2}}}\] as \[\dfrac{1}{{\sqrt x }}\] and \[{y^{ - \dfrac{1}{2}}}\] as \[\dfrac{1}{{\sqrt y }}\]. Therefore putting these values in the equation we get
\[ \Rightarrow \dfrac{1}{{2\sqrt x }} + \dfrac{1}{{2\sqrt y }} \cdot \dfrac{{dy}}{{dx}} = 0\]
Now we will modify the above equation to get the value of \[\dfrac{{dy}}{{dx}}\]. Therefore, we get
\[ \Rightarrow \dfrac{1}{{2\sqrt y }} \cdot \dfrac{{dy}}{{dx}} = - \dfrac{1}{{2\sqrt x }}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{2\sqrt y }}{{2\sqrt x }}\]
Now we will cancel out the common terms in the numerator and the denominator. Therefore, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }}\]
Hence the derivative of \[\sqrt x + \sqrt y = 1\] by using the implicit differentiation is equal to \[\dfrac{{dy}}{{dx}} = - \dfrac{{\sqrt y }}{{\sqrt x }}\].
Note:
A differentiable function may be defined as is a function whose derivative exists at every point in its range of domain. We should remember that a differentiable function is always continuous but the converse is not true which means a function may be continuous but not always differentiable. In this type of question we should simplify the equation in terms of the values given in the question.
We should know the basic formula of the differentiation of the \[uv\] and the formula of the differentiation of the \[\dfrac{u}{v}\],
\[\begin{array}{l}
\dfrac{d}{{dx}}\left( {uv} \right) = uv' + u'v\\
\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{vu' - uv'}}{{{v^2}}}
\end{array}\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

