Answer
Verified
424.8k+ views
Hint:In order to determine the critical numbers for the above function, first find the derivative of the function with respect to x . Put the derivative equal to zero to find out the value of $x$. The values of $x$ are nothing but the critical number of $f\left( x \right)$
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Formula:
$\dfrac{d}{{dx}}(\ln x) = \dfrac{1}{x}$
$\dfrac{d}{{dx}}({e^x}) = {e^x}$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
Complete step by step solution:
We are given a function $f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}$
In order to find the critical number of the above function, we first know what are critical numbers.
Critical numbers of any function $f\left( x \right)$ are the values of variable x for which derivative of
$f'(x) = 0$.
For this, we have to first find out the derivative of our function with respect to .
$\dfrac{d}{{dx}}f\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}} + {x^{ - \dfrac{1}{3}}}}
\right)$
Separating the derivative inside the bracket , we get
$f'\left( x \right) = \dfrac{d}{{dx}}\left( {{x^{\dfrac{2}{3}}}} \right) + \dfrac{d}{{dx}}\left( {{x^{ - \dfrac{1}{3}}}} \right)$
As we know the derivative of variable $x$raised to power some value \[n\] is $\dfrac{d}{{dx}}({x^n})
= n{x^{n - 1}}$. Applying this rule to the above equation to find the derivative of both the terms, we get
$
f'\left( x \right) = \dfrac{2}{3}{x^{\dfrac{2}{3} - 1}} + \dfrac{1}{3}{x^{ - \dfrac{1}{3} - 1}} \\
= \dfrac{2}{3}{x^{\dfrac{{2 - 3}}{3}}} + \dfrac{1}{3}{x^{ - \dfrac{{1 - 3}}{3}}} \\
= \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} \\
$
Now putting the $f'(x) = 0$ to obtain the critical numbers
$
f'(x) = \dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} + \dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}} = 0 \\
$
Multiplying both sides of the equation with $\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$, our equation
becomes
$\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}$
Simplifying further by using the rule of exponent that $\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}$
$
\left( {\dfrac{3}{{{x^{ - \dfrac{1}{3}}}}}} \right)\left( {\dfrac{2}{3}{x^{\dfrac{{ - 1}}{3}}} +
\dfrac{1}{3}{x^{\dfrac{{ - 4}}{3}}}} \right) = 0 \times \dfrac{3}{{{x^{ - \dfrac{1}{3}}}}} \\
2\left( {\dfrac{{{x^{\dfrac{{ - 1}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}}} \right) + \dfrac{{{x^{\dfrac{{ -
4}}{3}}}}}{{{x^{ - \dfrac{1}{3}}}}} = 0 \\
2\left( {{x^{\dfrac{{ - 1}}{3} + \dfrac{1}{3}}}} \right) + {x^{\dfrac{{ - 4}}{3} + \dfrac{1}{3}}} = 0
\\
2\left( {{x^0}} \right) + {x^{\dfrac{{ - 3}}{3}}} = 0 \\
$
As we know anything raised to the power zero equal to one
$
2 + {x^{ - 1}} = 0 \\
{x^{ - 1}} = - 2 \\
\dfrac{1}{x} = - 2 \\
$
Taking reciprocal on both of the sides, we get
$x = - \dfrac{1}{2}$
Therefore, the critical number for function$f\left( x \right) = {x^{\dfrac{2}{3}}} + {x^{ -
\dfrac{1}{3}}}$is $x = - \dfrac{1}{2}$.
Additional Information:
1.What is Differentiation?
It is a method by which we can find the derivative of the function .It is a process through which we can find the instantaneous rate of change in a function based on one of its variables. Let y = f(x) be a function of x. So the rate of change of $y$per unit change in $x$ is given by:
$\dfrac{{dy}}{{dx}}$.
Note:
1.Don’t forget to cross-check your answer at least once.
2.Differentiation is basically the inverse of integration.
3. Critical numbers are those values of x at which the graph of function changes.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE