
Find the coordinates of points which trisect the line segment joining (1, -2) and (-3, 4).
Answer
583.2k+ views
Hint: To solve this question, we will use the concept of section formula. The coordinates of the point R which divides the line segment joining two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] in the ratio m:n are given by, $x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}$ and \[y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}\]
Complete step-by-step answer:
Given that,
A line segment joining the points (1, -2) and (-3, 4) gets trisected and we have to find the coordinates of those points which trisects this line.
We know that the line segment which gets trisects means the line is divided either into 2:1 or in 1:2.
So,
Let A and B be the points which trisects the line PQ. Then, AP = AB = BQ.
Therefore, A divides the line PQ in the ratio 1:2 and B divides the line PQ in the ratio 2:1.
Case 1: when $A\left( {x,y} \right)$ divides the line in ratio 1:2.
By using the section formula,
The coordinates of the point $A\left( {x,y} \right)$ is given by,
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{1 \times \left( { - 3} \right) + 2 \times 1}}{{1 + 2}},\dfrac{{1 \times \left( 4 \right) + 2 \times \left( { - 2} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 3 + 2}}{3},\dfrac{{4 - 4}}{3}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 1}}{3},0} \right)\]
Case 2: when $B\left( {x,y} \right)$ divides the line in 2:1.
By using the section formula,
The coordinates of the point $B\left( {x,y} \right)$ is given by,
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{2 \times \left( { - 3} \right) + 1 \times 1}}{{2 + 1}},\dfrac{{2 \times \left( 4 \right) + 1 \times \left( { - 2} \right)}}{{2 + 1}}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 6 + 1}}{3},\dfrac{{8 - 2}}{3}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 5}}{3},2} \right)\]
Hence, we can say that the coordinates of the points which trisects the line segment joining (1, -2) and (-3, 4) are \[\left( {\dfrac{{ - 1}}{3},0} \right)\] are \[\left( {\dfrac{{ - 5}}{3},2} \right)\]
Note: In this type of questions, we also have to remember that the coordinates of the mid-point of the line segment joining by the two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] are given by, $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Complete step-by-step answer:
Given that,
A line segment joining the points (1, -2) and (-3, 4) gets trisected and we have to find the coordinates of those points which trisects this line.
We know that the line segment which gets trisects means the line is divided either into 2:1 or in 1:2.
So,
Let A and B be the points which trisects the line PQ. Then, AP = AB = BQ.
Therefore, A divides the line PQ in the ratio 1:2 and B divides the line PQ in the ratio 2:1.
Case 1: when $A\left( {x,y} \right)$ divides the line in ratio 1:2.
By using the section formula,
The coordinates of the point $A\left( {x,y} \right)$ is given by,
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{1 \times \left( { - 3} \right) + 2 \times 1}}{{1 + 2}},\dfrac{{1 \times \left( 4 \right) + 2 \times \left( { - 2} \right)}}{{1 + 2}}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 3 + 2}}{3},\dfrac{{4 - 4}}{3}} \right)\]
\[ \Rightarrow A\left( {x,y} \right) = \left( {\dfrac{{ - 1}}{3},0} \right)\]
Case 2: when $B\left( {x,y} \right)$ divides the line in 2:1.
By using the section formula,
The coordinates of the point $B\left( {x,y} \right)$ is given by,
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{2 \times \left( { - 3} \right) + 1 \times 1}}{{2 + 1}},\dfrac{{2 \times \left( 4 \right) + 1 \times \left( { - 2} \right)}}{{2 + 1}}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 6 + 1}}{3},\dfrac{{8 - 2}}{3}} \right)\]
\[ \Rightarrow B\left( {x,y} \right) = \left( {\dfrac{{ - 5}}{3},2} \right)\]
Hence, we can say that the coordinates of the points which trisects the line segment joining (1, -2) and (-3, 4) are \[\left( {\dfrac{{ - 1}}{3},0} \right)\] are \[\left( {\dfrac{{ - 5}}{3},2} \right)\]
Note: In this type of questions, we also have to remember that the coordinates of the mid-point of the line segment joining by the two points \[P\left( {{x_1},{y_1}} \right)\] and \[Q\left( {{x_2},{y_2}} \right)\] are given by, $\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right)$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

