
Find the conditions that the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ may meet in a point.
Answer
518.4k+ views
Hint: We first take the coordinates of the point in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other. We put the values and then using the condition of the coefficient matrix of the equations’ having determinant value 0, we find the required condition.
Complete step by step answer:
We assume the point $\left( h,k \right)$ in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other.
It means that the point $\left( h,k \right)$ lies on every line of $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$.
The point satisfies the equations.
Therefore, $k={{m}_{1}}h+{{c}_{1}}$, $k={{m}_{2}}h+{{c}_{2}}$, $k={{m}_{3}}h+{{c}_{3}}$.
We convert them into equations into side of the equality.
$k-{{m}_{1}}h-{{c}_{1}}=0$, $k-{{m}_{2}}h-{{c}_{2}}=0$, $k-{{m}_{3}}h-{{c}_{3}}=0$.
The three lines represents the same point with area being 0 when the coefficient matrix of the equations has determinant value 0 which means the matrix is singular matrix.
Therefore, $\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=0$.
We now need to simplify the determinant by expanding through the first column.
$\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
$\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|={{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}$
Now we simplify the equation ${{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0$. We take common terms out.
$\begin{align}
& {{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0 \\
& \Rightarrow {{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0 \\
\end{align}$
Therefore, the conditions that the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ may meet in a point is ${{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0$.
Note: Three or more distinct lines are said to be concurrent, if they pass through the same point. The point of intersection of any two lines, which lie on the third line is called the point of concurrence. Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.
Complete step by step answer:
We assume the point $\left( h,k \right)$ in which the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ meet each other.
It means that the point $\left( h,k \right)$ lies on every line of $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$.
The point satisfies the equations.
Therefore, $k={{m}_{1}}h+{{c}_{1}}$, $k={{m}_{2}}h+{{c}_{2}}$, $k={{m}_{3}}h+{{c}_{3}}$.
We convert them into equations into side of the equality.
$k-{{m}_{1}}h-{{c}_{1}}=0$, $k-{{m}_{2}}h-{{c}_{2}}=0$, $k-{{m}_{3}}h-{{c}_{3}}=0$.
The three lines represents the same point with area being 0 when the coefficient matrix of the equations has determinant value 0 which means the matrix is singular matrix.
Therefore, $\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=0$.
We now need to simplify the determinant by expanding through the first column.
$\left| \begin{matrix}
1 & -{{m}_{1}} & -{{c}_{1}} \\
1 & -{{m}_{2}} & -{{c}_{2}} \\
1 & -{{m}_{3}} & -{{c}_{3}} \\
\end{matrix} \right|=\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|$
$\left| \begin{matrix}
1 & {{m}_{1}} & {{c}_{1}} \\
1 & {{m}_{2}} & {{c}_{2}} \\
1 & {{m}_{3}} & {{c}_{3}} \\
\end{matrix} \right|={{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}$
Now we simplify the equation ${{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0$. We take common terms out.
$\begin{align}
& {{m}_{2}}{{c}_{3}}-{{m}_{3}}{{c}_{2}}+{{m}_{3}}{{c}_{1}}-{{m}_{1}}{{c}_{3}}+{{m}_{1}}{{c}_{2}}-{{m}_{2}}{{c}_{1}}=0 \\
& \Rightarrow {{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0 \\
\end{align}$
Therefore, the conditions that the straight lines $y={{m}_{1}}x+{{c}_{1}}$, $y={{m}_{2}}x+{{c}_{2}}$, $y={{m}_{3}}x+{{c}_{3}}$ may meet in a point is ${{m}_{1}}\left( {{c}_{2}}-{{c}_{3}} \right)+{{m}_{2}}\left( {{c}_{3}}-{{c}_{1}} \right)+{{m}_{3}}\left( {{c}_{1}}-{{c}_{2}} \right)=0$.
Note: Three or more distinct lines are said to be concurrent, if they pass through the same point. The point of intersection of any two lines, which lie on the third line is called the point of concurrence. Thus, if three lines are concurrent the point of intersection of two lines lies on the third line.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

