Find the compound interest on \[{\text{Rs}}.48000\] for \[2{\text{ yrs}}\] compounded annually at \[2\dfrac{1}{2}\% \] per annum.
Answer
Verified
452.1k+ views
Hint: Here we will be using the formula of compound interest which states as below:
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\] , where
\[A = {\text{final amount}}\],
\[P = {\text{initial principal balance}}\],
\[r = {\text{rate of interest}}\],
\[n = {\text{no}}{\text{.of time interest applied }}\] and
\[t = {\text{number of time periods}}\].
Complete answer:
Step 1: As given in the question
\[P = 48000\],
\[r = \dfrac{5}{2}\% \] ,
\[t = 2{\text{ yrs}}\] and
\[n = 1\]. By substituting these values in the formula
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\]we get:
\[A = 48000{\left( {1 + \dfrac{{5/2}}{1}} \right)^{1 \times 2}}\]
By solving inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1 + 0.025} \right)^2}\]
By doing addition inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1.025} \right)^2}\]
By solving the powers and multiplying
\[1.025 \times 1.025\], on the RHS side we get:
\[ \Rightarrow A = 48000\left( {1.050625} \right)\]
After doing the final multiplication in the RHS side of the above expression, we get:
\[ \Rightarrow A = {\text{Rs}}.{\text{ }}50430\]
Step 2: Now, as we know interest equals the subtraction of principal amount from total amount i.e. \[ \Rightarrow {\text{Interest}} = A - P\].
By substituting the values of \[P = 48000\] and \[A = 50430\] in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = 50430 - 48000\]
By doing the subtraction in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = {\text{Rs}}{\text{. }}2430\]
Interest amount is \[{\text{Rs}}{\text{. }}2430\].
Note:
Students need to remember the difference between the Simple interest and compound interest formulas. Simple interest is calculated on the principal amount. Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, which is known as interest on interest. Also, students need to know that the formula which we are using is for calculating the amount, not compound interest. Compound interest is the difference between the amount and principal value.
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\] , where
\[A = {\text{final amount}}\],
\[P = {\text{initial principal balance}}\],
\[r = {\text{rate of interest}}\],
\[n = {\text{no}}{\text{.of time interest applied }}\] and
\[t = {\text{number of time periods}}\].
Complete answer:
Step 1: As given in the question
\[P = 48000\],
\[r = \dfrac{5}{2}\% \] ,
\[t = 2{\text{ yrs}}\] and
\[n = 1\]. By substituting these values in the formula
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\]we get:
\[A = 48000{\left( {1 + \dfrac{{5/2}}{1}} \right)^{1 \times 2}}\]
By solving inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1 + 0.025} \right)^2}\]
By doing addition inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1.025} \right)^2}\]
By solving the powers and multiplying
\[1.025 \times 1.025\], on the RHS side we get:
\[ \Rightarrow A = 48000\left( {1.050625} \right)\]
After doing the final multiplication in the RHS side of the above expression, we get:
\[ \Rightarrow A = {\text{Rs}}.{\text{ }}50430\]
Step 2: Now, as we know interest equals the subtraction of principal amount from total amount i.e. \[ \Rightarrow {\text{Interest}} = A - P\].
By substituting the values of \[P = 48000\] and \[A = 50430\] in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = 50430 - 48000\]
By doing the subtraction in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = {\text{Rs}}{\text{. }}2430\]
Interest amount is \[{\text{Rs}}{\text{. }}2430\].
Note:
Students need to remember the difference between the Simple interest and compound interest formulas. Simple interest is calculated on the principal amount. Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, which is known as interest on interest. Also, students need to know that the formula which we are using is for calculating the amount, not compound interest. Compound interest is the difference between the amount and principal value.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
What is the specific heat capacity of ice water and class 11 physics CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light