
Find the common difference of AP whose \[{{n}^{th}}\] term is xn + y.
Answer
531.6k+ views
Hint: To solve the question, we have to compare the given series with the general arithmetic progression series to obtain equations of the unknown values. Then solve the obtained equations to calculate the unknown values.
“Complete step-by-step answer:”
We know that the general series of arithmetic progression is given by \[a,\text{ }a+d,\text{ }a+2d,..a+\left( n-1 \right)d\]
Where a, d and n are the first term, the common difference of the series of arithmetic progression and the number of terms in the series of arithmetic progression.
The given \[{{n}^{th}}\] term of arithmetic progression = xn + y
We know from the above series of arithmetic progression that \[{{n}^{th}}\]term of the series is given by the formula a + (n - 1)d
\[\begin{align}
& xn+\text{ }y=a+\left( n\text{ }-\text{ }1 \right)d \\
& xn+y-a=\left( n\text{ }-\text{ }1 \right)d \\
\end{align}\]
By rearranging the terms, we get
\[d=\dfrac{xn+y-a}{(n-1)}\] ….. (1)
We know that a is first term of series,
Thus, we get the first term by substituting n = 1 in \[{{n}^{th}}\] term of arithmetic progression = xn + y
The first term fo the given series of AP = x(1) + y = x + y
The value of a = x + y
By substituting the value of a in equation (1), we get
\[d=\dfrac{xn+y-(x+y)}{(n-1)}\]
\[d=\dfrac{xn+y-x-y}{(n-1)}\]
\[d=\dfrac{xn-x}{(n-1)}\]
\[d=\dfrac{x(n-1)}{(n-1)}\]
\[\Rightarrow d=x\]
\[\therefore \] The common difference of the given arithmetic progression = x
Note: The possibility of mistake can be not using the arithmetic progression general series formula to compare and calculate the answer. Using another method of writing series using a pattern method will elongate the process of solving.
“Complete step-by-step answer:”
We know that the general series of arithmetic progression is given by \[a,\text{ }a+d,\text{ }a+2d,..a+\left( n-1 \right)d\]
Where a, d and n are the first term, the common difference of the series of arithmetic progression and the number of terms in the series of arithmetic progression.
The given \[{{n}^{th}}\] term of arithmetic progression = xn + y
We know from the above series of arithmetic progression that \[{{n}^{th}}\]term of the series is given by the formula a + (n - 1)d
\[\begin{align}
& xn+\text{ }y=a+\left( n\text{ }-\text{ }1 \right)d \\
& xn+y-a=\left( n\text{ }-\text{ }1 \right)d \\
\end{align}\]
By rearranging the terms, we get
\[d=\dfrac{xn+y-a}{(n-1)}\] ….. (1)
We know that a is first term of series,
Thus, we get the first term by substituting n = 1 in \[{{n}^{th}}\] term of arithmetic progression = xn + y
The first term fo the given series of AP = x(1) + y = x + y
The value of a = x + y
By substituting the value of a in equation (1), we get
\[d=\dfrac{xn+y-(x+y)}{(n-1)}\]
\[d=\dfrac{xn+y-x-y}{(n-1)}\]
\[d=\dfrac{xn-x}{(n-1)}\]
\[d=\dfrac{x(n-1)}{(n-1)}\]
\[\Rightarrow d=x\]
\[\therefore \] The common difference of the given arithmetic progression = x
Note: The possibility of mistake can be not using the arithmetic progression general series formula to compare and calculate the answer. Using another method of writing series using a pattern method will elongate the process of solving.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
