Find the coefficient of ${{a}^{3}}{{b}^{3}}c$ in the expansion of \[{{(2a+b+3c)}^{7}}\].
Answer
326.4k+ views
Hint: For solving the question, we make use of concepts of binomial theorem along with permutations and combinations. Firstly, we try to find the number of ways in which we can arrange 3 a, 3 b and 1 c (since we have to find the coefficient of ${{a}^{3}}{{b}^{3}}c$). Next, we multiply this by the coefficient in the expression \[{{(2a+b+3c)}^{7}}\] corresponding to ${{a}^{3}}{{b}^{3}}c$.
Complete step-by-step answer:
We first find the number of combinations of arranging 3 a, 3 b and 1c. We have 7 terms. Thus, in general if we have 7 different terms, the total combinations would be 7! =5040. However, if we have some object of the same type, the number of combinations would be less since now we have identical objects and they would be treated as the same objects. To explain, if we have n objects with a objects of same type and b objects of same type (for aFor the number of combinations for arranging 3 a, 3 b and 1c, we have,
= $\dfrac{7!}{3!3!1!}$ -- (1)
This is for the term ${{a}^{3}}{{b}^{3}}c$. However, in the problem, we have \[{{(2a+b+3c)}^{7}}\]. Thus, we would have ${{(2a)}^{3}}{{b}^{3}}(3c)$ term. Thus, apart from the number of combination from (1), we would have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$=24 [since, ${{(2a)}^{3}}{{b}^{3}}(3c)=({{2}^{3}}({{1}^{3}})(3))({{a}^{3}}{{b}^{3}}c)$, thus we also have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$]. Now, finally, we combine this result with (1), we have,
= $\dfrac{7!}{3!3!1!}$$\times $24
=3360
Hence, the coefficient of ${{a}^{3}}{{b}^{3}}c$ is 3360.
Note: Finding the coefficient in a binomial theorem expansion requires a proper knowledge about permutations and combinations along with necessary expansion properties of the binomial theorem. In solving questions related to the above problem, we have a general formula to find the coefficient, we have, ${{(pa+qb+rc)}^{n}}$. To find, coefficient of ${{a}^{x}}{{b}^{y}}{{c}^{z}}$, the formula is $\dfrac{n!}{x!y!z!}\times ({{p}^{x}}{{q}^{y}}{{r}^{z}})$.
Complete step-by-step answer:
We first find the number of combinations of arranging 3 a, 3 b and 1c. We have 7 terms. Thus, in general if we have 7 different terms, the total combinations would be 7! =5040. However, if we have some object of the same type, the number of combinations would be less since now we have identical objects and they would be treated as the same objects. To explain, if we have n objects with a objects of same type and b objects of same type (for a
= $\dfrac{7!}{3!3!1!}$ -- (1)
This is for the term ${{a}^{3}}{{b}^{3}}c$. However, in the problem, we have \[{{(2a+b+3c)}^{7}}\]. Thus, we would have ${{(2a)}^{3}}{{b}^{3}}(3c)$ term. Thus, apart from the number of combination from (1), we would have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$=24 [since, ${{(2a)}^{3}}{{b}^{3}}(3c)=({{2}^{3}}({{1}^{3}})(3))({{a}^{3}}{{b}^{3}}c)$, thus we also have to multiply by ${{2}^{3}}\times {{1}^{3}}\times 3$]. Now, finally, we combine this result with (1), we have,
= $\dfrac{7!}{3!3!1!}$$\times $24
=3360
Hence, the coefficient of ${{a}^{3}}{{b}^{3}}c$ is 3360.
Note: Finding the coefficient in a binomial theorem expansion requires a proper knowledge about permutations and combinations along with necessary expansion properties of the binomial theorem. In solving questions related to the above problem, we have a general formula to find the coefficient, we have, ${{(pa+qb+rc)}^{n}}$. To find, coefficient of ${{a}^{x}}{{b}^{y}}{{c}^{z}}$, the formula is $\dfrac{n!}{x!y!z!}\times ({{p}^{x}}{{q}^{y}}{{r}^{z}})$.
Last updated date: 04th Jun 2023
•
Total views: 326.4k
•
Views today: 2.86k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
