Answer

Verified

373.2k+ views

**Hint:**The given problem can be solved by using the Henderson-Hasselbalch equation given below: ${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$. One can put the correct values and can calculate the change in pH to make the correct choice of answer.

**Complete step by step answer:**1) First of all for the determination of the change in pH, we need to first calculate the concentration of salt $\left( {{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}} \right)$ from the given moles and volume as below,

Given data,

Moles of the salt, ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa = 0}} \cdot {\text{01 Mol}}$

${\text{Volume of salt }} = 1L$

2) Now let us see the formula for the calculation of concentration as below,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa = }}\dfrac{{{\text{moles}}\;{\text{of}}\;{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}}}{{{\text{volume}}}}$

Now let us put the known values in the above formula we get,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = \dfrac{{{\text{0}}{\text{.01}}\;{\text{mol}}}}{{{\text{1}}\;{\text{L}}}}$

By doing the calculation part we get,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = 0 \cdot 01mol/L{\text{ or 0}} \cdot {\text{01 M}}$

3) Now, let us substitute the values in the Henderson-Hasselbalch equation we get,

${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$

By putting the known values in the above equation we get,

$pH = 4.74 + \log \dfrac{{{\text{0}}{\text{.01}}\;{\text{M}}}}{{{\text{0}}{\text{.01}}\;{\text{M}}}}$

Now by doing the calculation we get,

$pH = 4.74 + \log 1$

As the value of ${\text{log1}}$ is zero we get the above equation as below,

$pH = 4 \cdot 74$

4) Therefore, the change in the pH when ${\text{0}} \cdot {\text{01 Mol}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}$ is added to one liter of ${\text{0}} \cdot {\text{01 M}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}$ is ${\text{4}} \cdot {\text{74}}$ which shows option C as the correct choice of answer.

**Note:**

From the above calculated values, it can be seen that the pH and ${\text{p}}{{\text{K}}_{\text{a}}}$ values are the same. When the concentrations of acid and the conjugate base or salt are the same, i.e. when the acid is ${\text{50\% }}$ dissociated, the pH will be equal to the ${\text{p}}{{\text{K}}_{\text{a}}}$ of acid. From the above calculation, the pH value is coming out to be the same as that of ${\text{p}}{{\text{K}}_{\text{a}}}$ value which means the concentration is the same and there is no change in pH.

Recently Updated Pages

Carbon dioxide gas turns limewater milky A True B class 10 chemistry CBSE

Write the IUPAC name of CH3 CH25 CHO class 10 chemistry CBSE

Which of the following isare incorrect for humphrey class 10 chemistry CBSE

Thermodynamically in which form of carbon is the most class 10 chemistry CBSE

Which of the following are exothermic processes i Reaction class 10 chemistry CBSE

Water harvesting is done by processes A Rainwater B class 10 chemistry CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail

Name 10 Living and Non living things class 9 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths