Answer

Verified

408.6k+ views

**Hint:**The given problem can be solved by using the Henderson-Hasselbalch equation given below: ${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$. One can put the correct values and can calculate the change in pH to make the correct choice of answer.

**Complete step by step answer:**1) First of all for the determination of the change in pH, we need to first calculate the concentration of salt $\left( {{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}} \right)$ from the given moles and volume as below,

Given data,

Moles of the salt, ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa = 0}} \cdot {\text{01 Mol}}$

${\text{Volume of salt }} = 1L$

2) Now let us see the formula for the calculation of concentration as below,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa = }}\dfrac{{{\text{moles}}\;{\text{of}}\;{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}}}{{{\text{volume}}}}$

Now let us put the known values in the above formula we get,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = \dfrac{{{\text{0}}{\text{.01}}\;{\text{mol}}}}{{{\text{1}}\;{\text{L}}}}$

By doing the calculation part we get,

${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = 0 \cdot 01mol/L{\text{ or 0}} \cdot {\text{01 M}}$

3) Now, let us substitute the values in the Henderson-Hasselbalch equation we get,

${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$

By putting the known values in the above equation we get,

$pH = 4.74 + \log \dfrac{{{\text{0}}{\text{.01}}\;{\text{M}}}}{{{\text{0}}{\text{.01}}\;{\text{M}}}}$

Now by doing the calculation we get,

$pH = 4.74 + \log 1$

As the value of ${\text{log1}}$ is zero we get the above equation as below,

$pH = 4 \cdot 74$

4) Therefore, the change in the pH when ${\text{0}} \cdot {\text{01 Mol}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}$ is added to one liter of ${\text{0}} \cdot {\text{01 M}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}$ is ${\text{4}} \cdot {\text{74}}$ which shows option C as the correct choice of answer.

**Note:**

From the above calculated values, it can be seen that the pH and ${\text{p}}{{\text{K}}_{\text{a}}}$ values are the same. When the concentrations of acid and the conjugate base or salt are the same, i.e. when the acid is ${\text{50\% }}$ dissociated, the pH will be equal to the ${\text{p}}{{\text{K}}_{\text{a}}}$ of acid. From the above calculation, the pH value is coming out to be the same as that of ${\text{p}}{{\text{K}}_{\text{a}}}$ value which means the concentration is the same and there is no change in pH.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Mark and label the given geoinformation on the outline class 11 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths