Answer
Verified
390k+ views
Hint:The specific heat at constant volume is the amount that is needed to raise the temperature of unit mass of a gas by one degree at constant volume. Specific heat capacity at constant pressure is greater than the specific heat capacity at constant volume because at constant pressure, some of the energy goes into raising the temperature and some of the energy goes into doing work by expanding the ideal gas.
Formula used:
$\Delta Q = mc\Delta T$
Where $m = {\text{mass of substance}}$, $\Delta Q = {\text{change in heat}}$, $c = {\text{specific heat}}$ and $\Delta T = {\text{change in temperature}}$
Complete step by step answer:
Whenever heat energy is added to a substance, the temperature will change and the relationship between heat energy and temperature is different for each material and the specific heat is used to describe how they are related. It is given by the formula:
$\Delta Q = mc\Delta T$
Now,
$\Delta Q = mc\Delta T \\
\Rightarrow \Delta Q= {\text{Mass}} \times {\text{specific heat}} \times {\text{temperature change}}$
$\Rightarrow \Delta Q = 15 \times 0.2 \times 5\,cal$
$\therefore \Delta Q = 15\,cal$
For an isochoric process, work done is equal to zero.
By applying first law, the change in internal energy$ = \Delta Q = 15\,cal$
Therefore, option C is the correct answer.
Note:The change in the internal energy of a system is the sum of the heat transferred to the system and the work done. When the volume of a given system is constant, the change in its internal energy can be calculated by substituting the ideal gas law into the equation for change in internal energy.
Formula used:
$\Delta Q = mc\Delta T$
Where $m = {\text{mass of substance}}$, $\Delta Q = {\text{change in heat}}$, $c = {\text{specific heat}}$ and $\Delta T = {\text{change in temperature}}$
Complete step by step answer:
Whenever heat energy is added to a substance, the temperature will change and the relationship between heat energy and temperature is different for each material and the specific heat is used to describe how they are related. It is given by the formula:
$\Delta Q = mc\Delta T$
Now,
$\Delta Q = mc\Delta T \\
\Rightarrow \Delta Q= {\text{Mass}} \times {\text{specific heat}} \times {\text{temperature change}}$
$\Rightarrow \Delta Q = 15 \times 0.2 \times 5\,cal$
$\therefore \Delta Q = 15\,cal$
For an isochoric process, work done is equal to zero.
By applying first law, the change in internal energy$ = \Delta Q = 15\,cal$
Therefore, option C is the correct answer.
Note:The change in the internal energy of a system is the sum of the heat transferred to the system and the work done. When the volume of a given system is constant, the change in its internal energy can be calculated by substituting the ideal gas law into the equation for change in internal energy.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE