
Find the change in entropy (in cal/k) of ${\text{1}}$ mole of ${{\text{O}}_{\text{2}}}$ gas $\left( {{{\text{C}}_{\text{v}}} = \dfrac{5}{2}{\text{R}}} \right)$, when it is
i.Heated from ${\text{300K}}$ to ${\text{400K}}$ isobarically
ii.Heated from ${\text{300K}}$ to ${\text{400K}}$ isochorically (Given $\ln 3 = 1 \cdot 1,\ln 2 = 0 \cdot 7$)
Answer
538.5k+ views
Hint:Entropy can be defined as the measure of randomness of the system. Entropy change is an extensive property. The isobaric process can be defined as a process during which the pressure of the system remains constant while the isochoric process is a process during which the volume of the system remains constant.
Complete step by step answer:
1) First of all we will learn to calculate the change in entropy in the isobaric process by using the formula given below:
$\Delta {\text{S}} = {\text{n}}{{\text{C}}_{\text{p}}}{\text{ln}}\left( {\dfrac{{{{\text{T}}_{\text{2}}}}}{{{{\text{T}}_{\text{1}}}}}} \right)$ $......\left( 1 \right)$
Where,
${{\text{T}}_1}$ = Initial temperature i.e. 300 K
${{\text{T}}_{\text{2}}}$ = Final temperature i.e. 400 K
n = 1 mole
2) The value of ${{\text{C}}_{\text{p}}}$ can be calculated from the given value of ${{\text{C}}_v}$ as:
${{\text{C}}_{\text{p}}} - {{\text{C}}_{\text{v}}} = {\text{nR}}$
Now, lets put the value of ${{\text{C}}_v}$ in the above formula we get,
${{\text{C}}_{\text{p}}} - \dfrac{5}{2}{\text{R}} = 1 \times {\text{R}}$
By taking the ${{\text{C}}_{\text{p}}}$ value on one side we get,
${{\text{C}}_{\text{p}}} = {\text{R}} + \dfrac{{\text{5}}}{{\text{2}}}{\text{R}}$
By doing the addition part in the above equation we get,
${C_P} = \dfrac{7}{2}{\text{R}}$
3) Now, let's substitute this value of ${{\text{C}}_{\text{p}}}$ in equation (1), we get
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2}{\text{R}} \times {\text{ln}}\left( {\dfrac{{{\text{400}}}}{{{\text{300}}}}} \right)$
By putting the values of R and logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2} \times 8 \cdot 314 \times {\text{ln}}\left( {1 \cdot 33} \right)$
By putting the values of logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2} \times 8 \cdot 314 \times 0 \cdot 2851$
By doing the above calculation we get,
$\Delta S = 2 \cdot 1\;{\text{cal}}{{\text{T}}^{ - 1}}$
4) Now the change in entropy in isochoric process can be calculated using the formula given below:
$\Delta {\text{S}} = {\text{n}}{{\text{C}}_{\text{v}}}{\text{ln}}\left( {\dfrac{{{{\text{T}}_{\text{2}}}}}{{{{\text{T}}_{\text{1}}}}}} \right)$ $......\left( 2 \right)$
Where,
${{\text{T}}_1}$ = Initial temperature i.e. 300 K
${{\text{T}}_{\text{2}}}$ = Final temperature i.e. 400 K
n = 1 mole
${{\text{C}}_{\text{v}}} = \dfrac{5}{2}{\text{R}}$
Now, let us substitute the value in equation (2), we get
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2}{\text{R}} \times {\text{ln}}\left( {\dfrac{{{\text{400}}}}{{{\text{300}}}}} \right)$
By putting the values of R and logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2} \times 8 \cdot 314 \times {\text{ln}}\left( {1 \cdot 33} \right)$
By putting the values of logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2} \times 8 \cdot 314 \times 0 \cdot 2851$
By doing the above calculation we get,
$\Delta S = 1 \cdot 5\;{\text{cal}}{{\text{T}}^{ - 1}}$
5) Therefore we got the answers as,
i) $\Delta S = 2 \cdot 1\;{\text{cal}}{{\text{T}}^{ - 1}}$
ii) $\Delta S = 1 \cdot 5\;{\text{cal}}{{\text{T}}^{ - 1}}$
Note:
Entropy (S) is a state function that does not depend on the path followed. Therefore, entropy change depends on the initial and the final states only. Entropy change is an extensive property which means the entropy is dependent on the mass.
Complete step by step answer:
1) First of all we will learn to calculate the change in entropy in the isobaric process by using the formula given below:
$\Delta {\text{S}} = {\text{n}}{{\text{C}}_{\text{p}}}{\text{ln}}\left( {\dfrac{{{{\text{T}}_{\text{2}}}}}{{{{\text{T}}_{\text{1}}}}}} \right)$ $......\left( 1 \right)$
Where,
${{\text{T}}_1}$ = Initial temperature i.e. 300 K
${{\text{T}}_{\text{2}}}$ = Final temperature i.e. 400 K
n = 1 mole
2) The value of ${{\text{C}}_{\text{p}}}$ can be calculated from the given value of ${{\text{C}}_v}$ as:
${{\text{C}}_{\text{p}}} - {{\text{C}}_{\text{v}}} = {\text{nR}}$
Now, lets put the value of ${{\text{C}}_v}$ in the above formula we get,
${{\text{C}}_{\text{p}}} - \dfrac{5}{2}{\text{R}} = 1 \times {\text{R}}$
By taking the ${{\text{C}}_{\text{p}}}$ value on one side we get,
${{\text{C}}_{\text{p}}} = {\text{R}} + \dfrac{{\text{5}}}{{\text{2}}}{\text{R}}$
By doing the addition part in the above equation we get,
${C_P} = \dfrac{7}{2}{\text{R}}$
3) Now, let's substitute this value of ${{\text{C}}_{\text{p}}}$ in equation (1), we get
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2}{\text{R}} \times {\text{ln}}\left( {\dfrac{{{\text{400}}}}{{{\text{300}}}}} \right)$
By putting the values of R and logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2} \times 8 \cdot 314 \times {\text{ln}}\left( {1 \cdot 33} \right)$
By putting the values of logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{7}{2} \times 8 \cdot 314 \times 0 \cdot 2851$
By doing the above calculation we get,
$\Delta S = 2 \cdot 1\;{\text{cal}}{{\text{T}}^{ - 1}}$
4) Now the change in entropy in isochoric process can be calculated using the formula given below:
$\Delta {\text{S}} = {\text{n}}{{\text{C}}_{\text{v}}}{\text{ln}}\left( {\dfrac{{{{\text{T}}_{\text{2}}}}}{{{{\text{T}}_{\text{1}}}}}} \right)$ $......\left( 2 \right)$
Where,
${{\text{T}}_1}$ = Initial temperature i.e. 300 K
${{\text{T}}_{\text{2}}}$ = Final temperature i.e. 400 K
n = 1 mole
${{\text{C}}_{\text{v}}} = \dfrac{5}{2}{\text{R}}$
Now, let us substitute the value in equation (2), we get
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2}{\text{R}} \times {\text{ln}}\left( {\dfrac{{{\text{400}}}}{{{\text{300}}}}} \right)$
By putting the values of R and logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2} \times 8 \cdot 314 \times {\text{ln}}\left( {1 \cdot 33} \right)$
By putting the values of logarithm we get,
$\Delta {\text{S}} = {\text{1}} \times \dfrac{5}{2} \times 8 \cdot 314 \times 0 \cdot 2851$
By doing the above calculation we get,
$\Delta S = 1 \cdot 5\;{\text{cal}}{{\text{T}}^{ - 1}}$
5) Therefore we got the answers as,
i) $\Delta S = 2 \cdot 1\;{\text{cal}}{{\text{T}}^{ - 1}}$
ii) $\Delta S = 1 \cdot 5\;{\text{cal}}{{\text{T}}^{ - 1}}$
Note:
Entropy (S) is a state function that does not depend on the path followed. Therefore, entropy change depends on the initial and the final states only. Entropy change is an extensive property which means the entropy is dependent on the mass.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

