Answer
Verified
406.5k+ views
Hint: For answering this question we need to find the centre, vertices, foci and asymptotes of the given hyperbola. The general form of hyperbola is \[\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] for this the centre is given as $\left( 0,0 \right)$ and the vertices are given as $\left( a,0 \right)$ and $\left( -a,0 \right)$ . The distance between the foci and the centre is given as $\sqrt{{{a}^{2}}+{{b}^{2}}}$ and the equations of the asymptotes are given as $y=\dfrac{b}{a}x$ and $y=-\dfrac{b}{a}x$ .
Complete step by step answer:
Now considering from the question we have been given an equation of a hyperbola as follows \[\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{16}=1\] .
From the basic concepts of hyperbola we know that the general form of hyperbola is \[\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] for this the centre is given as $\left( 0,0 \right)$ and the vertices are given as $\left( a,0 \right)$ and $\left( -a,0 \right)$ . The distance between the foci and the centre is given as $\sqrt{{{a}^{2}}+{{b}^{2}}}$ and the equations of the asymptotes are given as $y=\dfrac{b}{a}x$ and $y=-\dfrac{b}{a}x$ .
By comparing we can say that $a=3$ and $b=4$ .
Hence we can conclude that the centre is given as $\left( 0,0 \right)$ and the vertices are given as $\left( a,0 \right)\Rightarrow \left( 3,0 \right)$ and $\left( -a,0 \right)\Rightarrow \left( -3,0 \right)$ . The distance between the foci and the centre is given as $\sqrt{{{a}^{2}}+{{b}^{2}}}\Rightarrow \sqrt{9+16}=\sqrt{25}\Rightarrow 5$ and the equations of the asymptotes are given as $y=\dfrac{b}{a}x\Rightarrow y=\dfrac{4}{3}x$ and $y=-\dfrac{b}{a}x\Rightarrow y=\dfrac{-4}{3}x$ .
As the distance between centre and foci is $5$ the points of the focus will be $\left( 5,0 \right)$ and $\left( -5,0 \right)$ .
By plotting the centre, foci, vertex and the asymptotes and joining them we will have the graph of the hyperbola as shown here-
Note: We should be very careful while comparing the equation of the given hyperbola and general form of the equation of hyperbola. Also, we should do the calculation very carefully while finding the distance from the centre to focus. Also, we should be well known about the general forms of conic sections. Similarly for a parabola ${{x}^{2}}=4ay$ the vertex is given as $(0,0)$ and the focus is given as $\left( a,0 \right)$
Complete step by step answer:
Now considering from the question we have been given an equation of a hyperbola as follows \[\dfrac{{{x}^{2}}}{9}-\dfrac{{{y}^{2}}}{16}=1\] .
From the basic concepts of hyperbola we know that the general form of hyperbola is \[\dfrac{{{x}^{2}}}{{{a}^{2}}}-\dfrac{{{y}^{2}}}{{{b}^{2}}}=1\] for this the centre is given as $\left( 0,0 \right)$ and the vertices are given as $\left( a,0 \right)$ and $\left( -a,0 \right)$ . The distance between the foci and the centre is given as $\sqrt{{{a}^{2}}+{{b}^{2}}}$ and the equations of the asymptotes are given as $y=\dfrac{b}{a}x$ and $y=-\dfrac{b}{a}x$ .
By comparing we can say that $a=3$ and $b=4$ .
Hence we can conclude that the centre is given as $\left( 0,0 \right)$ and the vertices are given as $\left( a,0 \right)\Rightarrow \left( 3,0 \right)$ and $\left( -a,0 \right)\Rightarrow \left( -3,0 \right)$ . The distance between the foci and the centre is given as $\sqrt{{{a}^{2}}+{{b}^{2}}}\Rightarrow \sqrt{9+16}=\sqrt{25}\Rightarrow 5$ and the equations of the asymptotes are given as $y=\dfrac{b}{a}x\Rightarrow y=\dfrac{4}{3}x$ and $y=-\dfrac{b}{a}x\Rightarrow y=\dfrac{-4}{3}x$ .
As the distance between centre and foci is $5$ the points of the focus will be $\left( 5,0 \right)$ and $\left( -5,0 \right)$ .
By plotting the centre, foci, vertex and the asymptotes and joining them we will have the graph of the hyperbola as shown here-
Note: We should be very careful while comparing the equation of the given hyperbola and general form of the equation of hyperbola. Also, we should do the calculation very carefully while finding the distance from the centre to focus. Also, we should be well known about the general forms of conic sections. Similarly for a parabola ${{x}^{2}}=4ay$ the vertex is given as $(0,0)$ and the focus is given as $\left( a,0 \right)$
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE