Answer
Verified
400.8k+ views
Hint:The given question requires us to find the centre of a circle given the three point on the circle as: $\left( { - 3,5} \right)$, $(3,3)$, $(11,19)$. So, we have to find the centre of the circle with the information that is given to us in the question. We can do so by putting in the values of the coordinates of the three points lying on the circle in the standard equation of circle.
Complete step by step solution:
Let us consider the equation of a circle in standard form whose centre is at $\left( {h,k} \right)$ and radius is r units.
So, we have,${(x - h)^2} + {(y - k)^2} = {r^2} - - - - (1)$
Now point $( - 3,5)$lies on a circle, thus it satisfies the equation of circle in equation $\left( 1 \right)$.
Hence, ${( - 3 - h)^2} + {(5 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow 9 + {h^2} + 6h + 25 + {k^2} - 10k = {r^2}$
$ \Rightarrow {h^2} + {k^2} + 6h - 10k + 34 = {r^2} - - - - - (2)$
Also, point $(3,3)$ lies on circle, thus it satisfies the equation of circle in equation $\left( 1 \right)$
${(3 - h)^2} + {(3 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow 9 + {h^2} - 6h + 9 + {k^2} - 6k = {r^2}$
\[ \Rightarrow {h^2} + {k^2} - 6h - 6k + 18 = {r^2}\]
Equating with equation$(2)$, we get,
\[ \Rightarrow {h^2} + {k^2} - 6h - 6k + 18 = {h^2} + {k^2} + 6h - 10k + 34\]
\[ \Rightarrow 12h - 4k + 16 = 0\]
On dividing both sides with $4$, we get,
$3h - k + 4 = 0 - - - - (3)$
Also, point$(11,19)$ lies in circle, thus it satisfies the equation of circle in equation$(1)$
${(11 - h)^2} + {(19 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow $$121 + {h^2} - 22h + 361 + {k^2} - 38k = {r^2}$
$ \Rightarrow $${h^2} + {k^2} - 22h - 38k + 482 = {r^2}$
Equating with equation$(2)$,
${h^2} + {k^2} - 22h - 38k + 482 = {h^2} + {k^2} + 6h - 10k + 34$
$ \Rightarrow $$28h + 28k - 448 = 0$
On dividing both sides with $28$,
$ \Rightarrow $$h + k - 16 = 0 - - - - (4)$
Now solving equation $(3)$ and $(4)$, we get,
$h = 3$ and $k = 13$
Thus coordinates of center of circle are $(3,13)$
Note: The centre of a circle can be found easily if three points lying on the circle are given to us by substituting the coordinates of the points in the equation of the circle and solving the three equations obtained for the coordinates of the centre.
Complete step by step solution:
Let us consider the equation of a circle in standard form whose centre is at $\left( {h,k} \right)$ and radius is r units.
So, we have,${(x - h)^2} + {(y - k)^2} = {r^2} - - - - (1)$
Now point $( - 3,5)$lies on a circle, thus it satisfies the equation of circle in equation $\left( 1 \right)$.
Hence, ${( - 3 - h)^2} + {(5 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow 9 + {h^2} + 6h + 25 + {k^2} - 10k = {r^2}$
$ \Rightarrow {h^2} + {k^2} + 6h - 10k + 34 = {r^2} - - - - - (2)$
Also, point $(3,3)$ lies on circle, thus it satisfies the equation of circle in equation $\left( 1 \right)$
${(3 - h)^2} + {(3 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow 9 + {h^2} - 6h + 9 + {k^2} - 6k = {r^2}$
\[ \Rightarrow {h^2} + {k^2} - 6h - 6k + 18 = {r^2}\]
Equating with equation$(2)$, we get,
\[ \Rightarrow {h^2} + {k^2} - 6h - 6k + 18 = {h^2} + {k^2} + 6h - 10k + 34\]
\[ \Rightarrow 12h - 4k + 16 = 0\]
On dividing both sides with $4$, we get,
$3h - k + 4 = 0 - - - - (3)$
Also, point$(11,19)$ lies in circle, thus it satisfies the equation of circle in equation$(1)$
${(11 - h)^2} + {(19 - k)^2} = {r^2}$
Opening the whole squares and simplifying calculations, we get,
$ \Rightarrow $$121 + {h^2} - 22h + 361 + {k^2} - 38k = {r^2}$
$ \Rightarrow $${h^2} + {k^2} - 22h - 38k + 482 = {r^2}$
Equating with equation$(2)$,
${h^2} + {k^2} - 22h - 38k + 482 = {h^2} + {k^2} + 6h - 10k + 34$
$ \Rightarrow $$28h + 28k - 448 = 0$
On dividing both sides with $28$,
$ \Rightarrow $$h + k - 16 = 0 - - - - (4)$
Now solving equation $(3)$ and $(4)$, we get,
$h = 3$ and $k = 13$
Thus coordinates of center of circle are $(3,13)$
Note: The centre of a circle can be found easily if three points lying on the circle are given to us by substituting the coordinates of the points in the equation of the circle and solving the three equations obtained for the coordinates of the centre.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE