
How do I find the cartesian equation of a plane containing three given points?
Answer
532.5k+ views
Hint: Here in this question, we have to find the cartesian form of equation of a plane containing three given points. Let's consider any plane. Let A, B and C be three noncollinear points and define two vectors \[\overrightarrow {AB} \] and \[\overrightarrow {AC} \] contained in a plane. By the Cross product of these two vectors we get the required cartesian equation of the plane.
Complete step by step answer:
A plane is a flat surface with no thickness. The Cartesian Plane is sometimes referred to as the x-y plane or the coordinate plane and is used to plot data pairs on a two-line graph. The Cartesian plane is named after the mathematician Rene Descartes who originally came up with the concept. Cartesian planes are formed by two perpendicular number lines intersecting.
Let us consider the plane and three non collinear points A, B and C, non collinear points refer to those points that do not all lie on the same line. Let the position vectors of these points be \[\overrightarrow a \] , \[\overrightarrow b \] , and \[\overrightarrow c \]. We know that the product of these position vectors are \[\overrightarrow {AB} \] and \[\overrightarrow {AC} \]. must be the cross product of two vectors contained in a plane defines the normal vector of the plane.
Let us now consider the coordinates of the three non collinear points as
\[\left( {A\left( {{x_1},{y_1},{z_1}} \right),B\left( {{x_2},{y_2},{z_2}} \right),C\left( {{x_3},{y_3},{z_3}} \right)} \right)\]
Let P be a point on the plane that must contain these points. The position vector of the point P be \[\overrightarrow r \] and its coordinates are \[\left( {x,y,z} \right)\]. Now, we can write the vectors as
\[\overrightarrow {AP} = \left( {x - {x_1}} \right)\widehat i + \left( {y - {y_1}} \right)\widehat j + \left( {z - {z_1}} \right)\widehat k\]
\[\overrightarrow {AB} = \left( {{x_2} - {x_1}} \right)\widehat i + \left( {{y_2} - {y_1}} \right)\widehat j + \left( {{z_2} - {z_1}} \right)\widehat k\]
And
\[\overrightarrow {AC} = \left( {{x_3} - {x_1}} \right)\widehat i + \left( {{y_3} - {y_1}} \right)\widehat j + \left( {{z_3} - {z_1}} \right)\widehat k\]
We can now use the Vector form to substitute the above vectors. Doing so would give us the advantage of presenting the equation in determinant form as
\[\left| {\begin{array}{*{20}{c}}
{\left( {x - {x_1}} \right)}&{\left( {y - {y_1}} \right)}&{\left( {z - {z_1}} \right)} \\
{\left( {{x_2} - {x_1}} \right)}&{\left( {{y_2} - {y_1}} \right)}&{\left( {{z_2} - {z_1}} \right)} \\
{\left( {{x_3} - {x_1}} \right)}&{\left( {{y_3} - {y_1}} \right)}&{\left( {{z_3} - {z_1}} \right)}
\end{array}} \right| = 0\]
Thus the determinant form gives us nothing but the Cartesian equation of a plane passing through three non collinear points.
Note: In the representing the coordinates we have two different forms, one is cartesian form and the other one is polar form. In the cartesian form the coordinates are mentioned in the form of x and y. . In the polar form the coordinates are mentioned in the form of r and theta. This method is a general method.
Complete step by step answer:
A plane is a flat surface with no thickness. The Cartesian Plane is sometimes referred to as the x-y plane or the coordinate plane and is used to plot data pairs on a two-line graph. The Cartesian plane is named after the mathematician Rene Descartes who originally came up with the concept. Cartesian planes are formed by two perpendicular number lines intersecting.
Let us consider the plane and three non collinear points A, B and C, non collinear points refer to those points that do not all lie on the same line. Let the position vectors of these points be \[\overrightarrow a \] , \[\overrightarrow b \] , and \[\overrightarrow c \]. We know that the product of these position vectors are \[\overrightarrow {AB} \] and \[\overrightarrow {AC} \]. must be the cross product of two vectors contained in a plane defines the normal vector of the plane.
Let us now consider the coordinates of the three non collinear points as
\[\left( {A\left( {{x_1},{y_1},{z_1}} \right),B\left( {{x_2},{y_2},{z_2}} \right),C\left( {{x_3},{y_3},{z_3}} \right)} \right)\]
Let P be a point on the plane that must contain these points. The position vector of the point P be \[\overrightarrow r \] and its coordinates are \[\left( {x,y,z} \right)\]. Now, we can write the vectors as
\[\overrightarrow {AP} = \left( {x - {x_1}} \right)\widehat i + \left( {y - {y_1}} \right)\widehat j + \left( {z - {z_1}} \right)\widehat k\]
\[\overrightarrow {AB} = \left( {{x_2} - {x_1}} \right)\widehat i + \left( {{y_2} - {y_1}} \right)\widehat j + \left( {{z_2} - {z_1}} \right)\widehat k\]
And
\[\overrightarrow {AC} = \left( {{x_3} - {x_1}} \right)\widehat i + \left( {{y_3} - {y_1}} \right)\widehat j + \left( {{z_3} - {z_1}} \right)\widehat k\]
We can now use the Vector form to substitute the above vectors. Doing so would give us the advantage of presenting the equation in determinant form as
\[\left| {\begin{array}{*{20}{c}}
{\left( {x - {x_1}} \right)}&{\left( {y - {y_1}} \right)}&{\left( {z - {z_1}} \right)} \\
{\left( {{x_2} - {x_1}} \right)}&{\left( {{y_2} - {y_1}} \right)}&{\left( {{z_2} - {z_1}} \right)} \\
{\left( {{x_3} - {x_1}} \right)}&{\left( {{y_3} - {y_1}} \right)}&{\left( {{z_3} - {z_1}} \right)}
\end{array}} \right| = 0\]
Thus the determinant form gives us nothing but the Cartesian equation of a plane passing through three non collinear points.
Note: In the representing the coordinates we have two different forms, one is cartesian form and the other one is polar form. In the cartesian form the coordinates are mentioned in the form of x and y. . In the polar form the coordinates are mentioned in the form of r and theta. This method is a general method.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

