Find the Arithmetic mean of the following sequence a-2,a , a+2
Last updated date: 18th Mar 2023
•
Total views: 306k
•
Views today: 4.85k
Answer
306k+ views
Hint:- Arithmetic mean is the average of all numbers in a set. Here add the 3 numbers in the given sequence and divide it by 3 to find A.M.
Given, an arithmetic sequence a-2,a , a+2.
An arithmetic sequence is a set of numbers with a definite pattern. There is a constant difference in all pairs of consecutive or successive numbers. E.g. 2,3,4,5.
We have constant difference ‘2’ in the arithmetic sequence a-2,a,a+2. Each term is having a constant difference of 2 from the consecutive term.
Now, A.M. stands for arithmetic mean. It is the ratio of the sum of all numbers present in the arithmetic sequence to the number of numbers present in the arithmetic sequence. In simple words, it is the average of all the numbers present in the arithmetic sequence.
Sum of all the numbers in the arithmetic sequence = a-2 +a+a+2
=3a
Number of terms in the sequence = 3.
So, A.M. = $\dfrac{{3{\text{a}}}}{3}$= a.
Hence, the arithmetic mean or A.M. of the given sequence is a.
Note:- There are three types of defined sequence available. They are arithmetic , geometric and harmonic. In arithmetic sequences each consecutive term can be obtained by adding a constant difference to the last term.
Given, an arithmetic sequence a-2,a , a+2.
An arithmetic sequence is a set of numbers with a definite pattern. There is a constant difference in all pairs of consecutive or successive numbers. E.g. 2,3,4,5.
We have constant difference ‘2’ in the arithmetic sequence a-2,a,a+2. Each term is having a constant difference of 2 from the consecutive term.
Now, A.M. stands for arithmetic mean. It is the ratio of the sum of all numbers present in the arithmetic sequence to the number of numbers present in the arithmetic sequence. In simple words, it is the average of all the numbers present in the arithmetic sequence.
Sum of all the numbers in the arithmetic sequence = a-2 +a+a+2
=3a
Number of terms in the sequence = 3.
So, A.M. = $\dfrac{{3{\text{a}}}}{3}$= a.
Hence, the arithmetic mean or A.M. of the given sequence is a.
Note:- There are three types of defined sequence available. They are arithmetic , geometric and harmonic. In arithmetic sequences each consecutive term can be obtained by adding a constant difference to the last term.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
